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The evaluation of interactions between nearby particles constitutes the majority of the
computational workload involved in classical molecular dynamics (MD) simulations. In this paper,
we introduce a new method for the parallelization of range-limited particle interactions that proves
particularly suitable to MD applications. Because it applies not only to pairwise interactions but also
to interactions involving three or more particles, the method can be used for evaluation of both
nonbonded and bonded forces in a MD simulation. It requires less interprocessor data transfer than
traditional spatial decomposition methods at all but the lowest levels of parallelism. It gains an
additional practical advantage in certain commonly used interprocessor communication networks by
distributing the communication burden more evenly across network links and by decreasing the
associated latency. When used to parallelize MD, it further reduces communication requirements by
allowing the computations associated with short-range nonbonded interactions, long-range
electrostatics, bonded interactions, and particle migration to use much of the same communicated
data. We also introduce certain variants of this method that can significantly improve the balance of

computational load across processors. © 2006 American Institute of Physics.

[DOI: 10.1063/1.2191489]

I. INTRODUCTION

Molecular dynamics (MD) simulations of biological
macromolecules in explicit solvent aim to provide a compu-
tational “microscope,” yielding insight into biochemical
events that are difficult to observe experimentally.] Simula-
tions of significantly more than a microsecond, however, re-
quire tremendous computational power and will likely only
become practical through the use of a large number of pro-
cessors in parallel.2 Such parallelism is limited by interpro-
cessor communication requirements. In this paper, we intro-
duce the midpoint method, a parallelization method that
proves particularly useful for MD.

Most of the computational workload in MD is associated
with the evaluation of electrostatic and van der Waals forces
between all pairs of atoms separated by less than some inter-
action radius R.> The explicit evaluation of interactions be-
tween pairs of particles separated by less than some maxi-
mum distance also constitutes the majority of the
computational expense of gravitational simulations in astro-
physics, particle simulations in plasma physics, and smooth
particle hydrodynamic simulations in fluid dynamics.“’5 Tra-
ditional methods for parallelizing such problems, described
in several review papers,6 include atom, force, and spatial
decomposition methods. Unlike atom and force decomposi-
tion methods, spatial decomposition methods offer the desir-
able property that the amount of data to be transferred into
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and out of each processor (the method’s communication
bandwidth) decreases as the interaction radius decreases.

A number of recently introduced methods for paralleliz-
ing range-limited particle interactions’ require significantly
less communication bandwidth than traditional paralleliza-
tion methods. These novel methods are similar to traditional
spatial decomposition methods in that each processor takes
responsibility for updating positions of particles that fall in a
certain region of space and in that their communication
bandwidth decreases as the interaction radius decreases. Un-
like traditional spatial decomposition methods, however,
these new methods sometimes compute the interaction be-
tween a pair of particles on a processor on which neither
particle resides.® We refer to such techniques as neutral ter-
ritory methods.

The midpoint method is a neutral territory method that
requires less communication bandwidth than any traditional
spatial decomposition method at all but extremely low levels
of parallelism, where it requires the same amount of commu-
nication bandwidth as traditional methods. While certain
other neutral territory methods require less communication
bandwidth than the midpoint method for pairwise interac-
tions parallelized over a sufficiently large number of proces-
sors, the midpoint method offers significant advantages over
previously described methods in several respects. It applies
not only to pairwise interactions, but also to interactions in-
volving sets of three or more particles. In addition, it typi-
cally incurs a smaller penalty due to communication latency
than other methods. It also communicates equal amounts of
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data in each direction, leading to more effective use of com-
munication links in certain network topologies.

The midpoint method enjoys additional advantages in
the context of MD computations. It can be used to parallelize
the evaluation of bonded force terms, which commonly in-
volve the interaction of up to four particles, as well as pair-
wise electrostatic and van der Waals terms. Moreover, it al-
lows several components of the MD computation, including
the evaluation of the bonded force terms, to rely on the same
data that are communicated for the evaluation of electrostatic
and van der Waals forces between pairs of nearby atoms. The
midpoint method thus proves a particularly attractive choice
for the parallelization of MD computations on up to at least
512 processors. (Throughout this paper, we use the term
“processor” to refer to a processing node connected to other
such nodes through a communication network; one such pro-
cessor might actually include a number of independent pro-
cessing units, but we assume that the communication be-
tween them is faster than the communication between
processing nodes, and thus focus on parallelization across,
but not within, the processing nodes.) Recent IBM technical
reports describe an independently developed but related tech-
nique for parallelizing MD on Blue Gene/L.'"!!

We also describe certain variants of the midpoint
method, to which we refer as midpoint-ensured methods, that
lend themselves particularly well to load balancing. In a
midpoint-ensured method, each processor imports the same
data as would be imported in the midpoint method, but the
assignment of interaction computations to processors is ad-
justed in such a way that the computational load on different
processors is more even.

Il. SPECIFICATION OF THE MIDPOINT METHOD

In the midpoint method, as in traditional spatial decom-
position methods and previously described neutral territory
methods, each processor assumes responsibility for updating
the positions of particles in a distinct region of space, regard-
less of where the particle interactions are computed. When
applied to pairwise interactions, the midpoint method speci-
fies that two particles interact on a particular processor if and
only if the midpoint of the segment connecting them falls
within the region of space associated with that processor.

We refer to the region containing the system to be simu-
lated as the global cell. One can use the midpoint method
with a global cell of any shape and with any regular or ir-
regular partition of the global cell into regions assigned to
different processors.12 To simplify our exposition, we will
assume in this paper that the global cell is a rectangular
parallelepiped of dimensions G, X G, X G, and that it is di-
vided into a regular grid of smaller rectangular parallelepi-
peds that we call boxes. Each processor updates the coordi-
nates of particles in one box, referred to as the home box of
that processor and of those particles. In the interest of sim-
plicity, we will refer interchangeably to a processor and its
home box. We refer to particles that do not reside in a par-
ticular box as remote to that box. When working in a three-
dimensional space, we denote the dimensions of each box by
b, Xby,Xb,, and we refer to the quantities b,/b, and b,/ b, as

J. Chem. Phys. 124, 184109 (2006)

a b c
1
¥ ]
/* ‘l\\

d \e *,k\\*s f
\ x V2N
LA

\ /‘)s' +

FIG. 1. Assignment of particle pairs to interaction boxes in the midpoint
method. In this figure, the boxes are square with side length b and R
=1.5b. Each pair of particles separated by a distance less than R is con-

g

nected by a dashed line segment, with the “x” at its center lying in the box
which will compute the interaction of that pair.

the box aspect ratios. The base coordinates of a given box
and of any particle located within that box are defined as the
coordinates of the low-coordinate corner of that box.

We will assume that the global cell tiles an infinite space
by repeating in each dimension with a period equal to the
side length of the global cell in that dimension. The periodic
boundary conditions imposed by this assumption simplify
our exposition, but the methods discussed in this paper are
also applicable to systems with other boundary conditions.
We will also assume for simplicity that G,=b,+2R, G,
Bby+2R, and G,=b,+2R, so that at most one image of a
given particle interacts with particles in a given box.

We refer to the box in which a set of particles interact as
their interaction box. Figure 1 illustrates the assignment of
particle pairs to interaction boxes implied by the midpoint
method. Two particles that lie in the same box necessarily
interact in that box, but particles that lie in different boxes
may interact either in the box in which one of them resides
(e.g., particles 2 and 3) or in a box in which neither resides
(e.g., particles 1 and 5 or particles 3 and 4).

If two particles are separated by a distance »r<<R, then
the distance from either particle to their midpoint is r/2
< R/2. If the midpoint lies within a particular box, then each
particle must lie either within that box or less than a distance
R/2 from its boundary. In the midpoint method, the volume
of space from which a given processor must “import” par-
ticle data that ordinarily resides within other processors (its
import region) therefore includes only points within a dis-
tance R/2 of its home box. This import region is shown in
Fig. 2(a) for a two-dimensional system and in Fig. 3(a) for a
three-dimensional system. In a MD simulation, or any other
application that requires computation of the total force on
each particle, each interaction box must “export” a force con-
tribution to each of the particles in its import region after it
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(a) (b)

FIG. 2. Import regions of (a) the two-dimensional midpoint method and (b)
the two-dimensional analog of the HS method. The boxes are square with
side length b and R=1.5b. In each case, the interaction box is shown in light
gray and the import region in dark gray.

has computed all the interactions assigned to it. For all of the
generalized spatial decomposition methods described in this
paper, the volume of space to which a given processor must
export force contributions is identical to its import region. In
applications that require only computation of a global poten-
tial energy, force export is not required.

Figures 2 and 3 also show the import regions of several
previously described methods. The HS method is an example
of a traditional spatial decomposition method, in which the
box that interacts two particles is always the home box of
one or both of them. In the HS method, the particles interact

(@) (b)
(c) (d)

FIG. 3. Import regions of (a) the three-dimensional midpoint method, (b)
the HS method, (c) the NT method, and (d) the ES method. In each case, the
interaction box is shown in light gray and the import region in dark gray.
The diagrams of the midpoint method, the HS method, and the ES method
assume that the boxes are cubic with side length b and that R=1.5b. The
diagram of the NT method assumes the same values for R and for box
volume, but box aspect ratios have been optimized to minimize import
volume.
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within the home box of the particle with the smaller x base
coordinate, with ties broken first in favor of the particle with
the smaller y base coordinate and then in favor of the particle
with the smaller z base coordinate. Figure 3(b) shows the
import region of the HS method, and Fig. 2(b) shows the
import region of a two-dimensional analog of that method.

The NT and ES methods, whose import regions are
shown in Figs. 3(c) and 3(d), are neutral territory methods
that we recently introduced.”” In the NT method, two par-
ticles interact within a box that has the x and y base coordi-
nates of one particle and the z base coordinate of the other
particle. Specifically, the x and y base coordinates of the
interaction box are those of the particle with the smaller x
base coordinate, with ties broken first in favor of the particle
with the smaller y base coordinate and then in favor of the
particle with the larger z base coordinate. The z base coordi-
nate of the interaction box is the z base coordinate of the
other particle. In the ES method, a pair of particles interacts
within a box whose x base coordinate is that of the particle
with the smaller x coordinate, whose y base coordinate is that
of the particle with the smaller y coordinate, and whose z
base coordinate is that of the particle with the smaller z co-
ordinate.

In a previous paper,8 we described the zonal methods, a
class of parallelization algorithms that include both tradi-
tional spatial decomposition methods (e.g., the HS method)
and certain neutral territory methods (e.g., the NT and ES
methods). In a zonal method, one associates with each box a
set of regions called zones, where each box has the same
spatial relationship with its zones as does each other box.
Each box “interacts” certain pairs of its zones by computing
the interaction between each particle in one zone and each
particle in the other zone. This procedure may lead to some
duplicate interactions or to interactions between pairs of par-
ticles separated by a distance greater than R, but such redun-
dant interactions can be avoided if each processor computes
interactions only for particle pairs that satisfy certain test
criteria. The midpoint method for pairwise particle interac-
tions can also be formulated as a zonal method, providing a
convenient means to implement the midpoint method. Figure
4 shows a formulation with nine zones for the midpoint
method in two dimensions; an analogous formulation in
three dimensions would require 27 zones. Alternatively, one
might divide the import region and the interaction box into a
larger number of zones, which may result in higher perfor-
mance by reducing wasted computation associated with par-
ticle pairs that fail the test criteria and by providing more
opportunities to overlap communication time with computa-
tion time.

The midpoint method can also handle interactions that
involve sets of three or more particles. Suppose that we wish
to compute interactions between all sets of m particles that
fall within some sphere of radius R/2 (if m=2, this is equiva-
lent to the statement that we wish to compute interactions
between all pairs of particles separated by less than a dis-
tance R). In the midpoint method, the interaction between a
set of m particles is computed on the processor that contains
their midpoint, defined as the center of the smallest sphere
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FIG. 4. A formulation of the two-dimensional midpoint method as a zonal
method. (a) The interaction box (I) represents a single zone, and the import
region is partitioned into eight zones. (b) An interaction schedule indicating
which pairs of zones interact. An entry of 0 indicates that the zones in the
corresponding row and column do not interact, while an entry of 1 indicates
that they do.

that contains all m particles. The import region of the mid-
point method in the m-particle case is identical to that for the
two-particle case.

The import region of the HS method also guarantees that
at least one processor will import all the particles necessary
to compute the interaction between any set of m particles that
fall within a sphere of radius R/2, but this is not the case for
previously described neutral territory methods such as the
NT and ES methods. The ES method does generalize in a
straightforward manner to interactions of m particles; it as-
signs the interaction of a set of particles to the box whose x
base coordinate is that of the particle with the smallest x
coordinate, whose y base coordinate is that of the particle
with the smallest y coordinate, and whose z base coordinate
is that of the particle with the smallest z coordinate. This
generalization requires expansion of the import region, how-
ever, as discussed further in the Appendix.

In practice, determining the midpoint of three or more
particles involves significantly more computation than deter-
mining the midpoint of two particles. One can reduce the
required amount of computation at the expense of a small
amount of additional communication by employing the
midpoint-ensured methods introduced in Sec. IV or by using
an approximation to the midpoint, as described in the
Appendix.
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lll. PERFORMANCE CHARACTERISTICS
OF THE MIDPOINT METHOD

A. Communication bandwidth

Assuming uniform particle density, the amount of par-
ticle data that must be transferred into each processor during
particle import (and out of each processor during force ex-
port, in applications that require force calculation) is propor-
tional to the volume of the import region. We will therefore
use the volume of the import region (V;) as a measure of
communication bandwidth requirements. This volume de-
pends not only on the interaction radius and the volume of
each box (V,), but also on the box aspect ratios. For the
midpoint, HS, and ES methods, one minimizes the import
volume for a fixed interaction radius and box volume by
using cubic boxes. For the NT method, on the other hand,
noncubic boxes typically minimize the import volume.”

For the parallelization methods discussed in this paper,
the shape of the import region depends only on the ratios of
the box side lengths to the interaction radius R. In three
dimensions, the ratio of the import volume to the box volume
(V;/V,) for a particular method can be determined uniquely
given R/b,, R/by, and R/b.. Alternatively, V;/V, can be ex-
pressed as a function of the box aspect ratios b,/b, and b,/b,
and the parallelization parameter ag, where we define ay as
the geometric mean of R/b,, R/ by, and R/b, as follows:

(R R R>1/3 <R3)1/3 R
Ap = —_— = — = 0.
K \b,byb v, 13

xVy Uz

For cubic boxes of side length b, ay is simply R/b. The
parallelization parameter ap might be viewed as a measure
of the extent to which a particular simulation has been par-
allelized.

Assuming cubic boxes, the import volume for the HS
method is

V= Vb(3aR+ %ﬂ'aﬁ+ %wcﬁ),
while that for the midpoint method is
V= Vb(3aR+ %’77(1’123+ é’]TCL’S).

The import volume of the midpoint method is always smaller
than that of the HS method, with the difference growing in
both relative and absolute terms as ap grows. The import
volume of the ES method for pairwise interactions® is iden-
tical to that of the midpoint method. To the best of our
knowledge, no published method has a smaller import vol-
ume than the midpoint method for small a; (i.e., at low
degrees of parallelism).13

Asymptotically, the import volumes of the midpoint, ES,
and HS methods all grow with the cube of ap, while the
import volumes of certain other neutral territory methods,
including the NT method, grow as afe/ 2 8914 Thus for large
values of ay, the NT method has a lower import volume than
the midpoint or ES methods. More specifically, the NT
method has a lower import volume than the midpoint method
when ap>0.82, assuming box aspect ratios are chosen to
minimize the import volume for each method.

Figure 5 shows the import volumes' of the various par-
allelization methods as a function of the number of proces-
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FIG. 5. Import volumes of several parallelization methods for pairwise in-
teractions as a function of the number of processors p, assuming a cubic
global cell with a side length of 80 A and an interaction radius R=12 A.
Import volumes are represented relative to that of the HS method (V; ) for
any number of processors. The box aspect ratios of the NT method were
optimized at each value of p to minimize import volume, while the boxes
are assumed to be cubic for the other methods. The midpoint and ES meth-
ods have the same import volume for all p.

sors for a system with a cubic global cell measuring 80 A on
a side and an interaction radius of 12 A. These parameters
are within the range that might be typical for the computa-
tion of explicit pairwise electrostatic and van der Waals
forces in a MD simulation of a biomolecular system; at a
typical density of 0.1 atoms/A3, such a system would con-
tain about 51 000 atoms. The midpoint and ES methods have
the lowest import volume of the methods shown for up to
160 processors, with the NT method achieving a lower im-
port volume for higher numbers of processors. The kZ-NT
method, a variant of the NT method that we described in a
recent paper,8 has a slightly lower import volume than any of
the methods shown here for more than 63 processors. As
discussed in the remainder of the paper, however, the mid-
point method has a number of advantages over the compet-
ing methods that are not captured by the import volume.
The one situation in which the midpoint method requires
the same import volume as traditional spatial decomposi-
tions, rather than a smaller one, is when the global cell is
partitioned into boxes along only one dimension, that is,
when the grid of boxes has dimensions 1 X 1Xn, | Xn X1,
or nX1X1. Such a situation violates our assumption that
G,=b,+2R, G,=by+2R, and G,=b,+2R (Sec. II); the
midpoint method still applies in this case, as do traditional
spatial decompositions, but their import volumes are differ-
ent from those computed above, as communication is only
required along one dimension. A one-dimensional partition
of the global cell maximizes the bandwidth only at very low
levels of parallelism. In our example system above, such an
approach has minimal import volume only when using fewer
than six processors. The midpoint method also applies when
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the global cell is partitioned along two out of three dimen-
sions (e.g., a grid of boxes with dimensions 1Xn; X n,,
where n;=2 and n,=2); in this situation, it always has a
lower import volume than traditional spatial decompositions.

Thus far we have concentrated our analysis on import
volume, which serves as an accurate proxy for per processor
communication bandwidth when particles are distributed
uniformly and when a single interaction radius R is used
throughout the simulation, as is generally the case for ex-
plicit solvent molecular dynamics simulations. When these
assumptions do not hold, different processors may need to
import different amounts of data, which will negatively im-
pact the scalability of any of the methods discussed in this
paper.

In a system with multiple communication links, commu-
nication will typically be most efficient if the communication
load is spread evenly over all the links. The symmetry of the
midpoint method’s import region therefore proves advanta-
geous for certain communication network topologies such as
the three-dimensional toroidal mesh used in IBM’s
BlueGene/L, the Sandia/Cray Red Storm, Cray’s T3D, T3E,
and XT3, and some LINUX clusters.'® In this topology each
processor is connected to the processors adjacent to it in each
of the six cardinal directions (+x,-x,+y,-y,+z,—z). For
three-dimensional simulation, the midpoint, HS, ES, and NT
methods all map naturally to this topology, but the midpoint
method has an advantage over the others because it transfers
an approximately equal amount of data in each of the six
directions. The ES method, on the other hand, communicates
data only in the —x, —y, and —z directions during particle
import, so while the ES and midpoint methods have the same
import volumes, the maximum bandwidth per communica-
tion link for the ES method will be roughly double that for
the midpoint method in such an architecture. The import pro-
cedures of the NT and HS methods communicate data in five
of the six cardinal directions, but they send nearly twice as
much data in the —x direction as in any other direction.

B. Communication latency

For certain network topologies and protocols, the mid-
point method gains a further advantage from the fact that the
maximum distance of a point in the import region from the
interaction box boundary is smaller for the midpoint method
than for other published methods. This is perhaps most ob-
vious for a toroidal mesh network, where the communication
latency associated with a pair of processors (a fixed time
interval associated with the overhead entailed in transferring
a message from one processor to another, independent of the
amount of data contained in that message) increases with the
hop count, the number of interprocessor connections a mes-
sage must traverse to get from one processor to the other. In
such a network, the maximum hop count and therefore the
maximum communication latency associated with particle
import under the midpoint method are less than or equal to
that under the HS or ES method. At high levels of parallel-
ism, the hop count of the midpoint method will be approxi-
mately half that of the HS and ES methods. For example,
consider a three-dimensional case with cubic boxes and with
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ag=2 (i.e., R=2b, where b is the box side length). The mid-
point method requires each interaction box to import data
from the boxes with which it shares a face, edge, or corner.
Communication between boxes that share a face requires one
hop, communication between boxes that share an edge but
no face requires two hops, and communication between
boxes that share only a corner requires three hops, so the
maximum hop count for the midpoint method in this case is
three. The HS and ES methods, on the other hand, have a
maximum hop count of six in this case, because these meth-
ods require the import of data from more distant boxes in
every direction. The maximum hop count for the NT method
in this case is four, whether one constrains the boxes to be
cubic or optimizes their aspect ratios to minimize the import
volume. At low levels of parallelism, the maximum hop
count of the NT method may be less than that of the mid-
point method; in particular, if R was less than any box side
length, the maximum hop count of the NT method would be
two, while that of the midpoint method would still be three.
The maximum hop count of the NT method is always greater
than or equal to that of the midpoint method when aR>%E,
or when boxes are cubic and ax>1.

In many communication networks, the time required by
a processor to send data depends not only on the amount of
data but also on the number of separate messages to be sent.
As a result, the number of other processors with which each
processor must communicate directly has a significant im-
pact on total communication time. Whenever ap>1, the
midpoint method will require each processor to send fewer
messages than the NT and HS methods and the same number
of messages as the ES method, whether the box aspect ratio
is constrained to be cubic or adjusted to minimize the import
volume. Consider again the three-dimensional case with cu-
bic boxes and az=2 (i.e., R=2b). The midpoint method re-
quires that each processor import data from its 26 nearest
neighbors. We can accomplish all communication necessary
for particle import in six send/receive cycles by first sending
all data that must move in the +x direction one step in that
direction, then sending all data that must move in the —x
direction one step in that direction, and then performing
similar send operations for the +y, —y, +z, and —z directions.
The ES method also requires six send/receive cycles, be-
cause data must move up to two steps in each of the —x, —y,
and —z directions. The NT and HS methods require ten send/
receive cycles, however, because data must move up to two
steps in each of the —x, +y, —y, +z, and —z directions.

C. Further advantages for molecular dynamics
simulations

The midpoint method proves particularly suitable for
parallelization of MD simulations because it allows several
different components of the computation to utilize the same
communicated particle data, thereby resulting in lesser total
communication time than if each component were parallel-
ized separately.

The total force on a particle in most common biomolecu-
lar force fields, such as CHARMM,17 AMBER,18 OPLS-AA,19
GROMOS,ZO and MMFF,21 is expressed as a sum of bonded
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force terms, which depend on the covalent bond structure of
the molecules, and nonbonded force terms, which comprise
electrostatic and van der Waals interactions between all pairs
of particles in the system. Bonded force terms include bond
length terms, involving two particles connected by a bond;
bond angle terms, involving three particles, two of which are
bonded to a third; and dihedral angle (torsional) terms, in-
volving four particles connected by three bonds. We denote
by 7ponded the maximum radius of a sphere required to en-
close the particles involved in any one bonded force term. In
common biomolecular force fields, ryy,q0q 1S NO larger than
4 A

The nonbonded force terms involve all pairs of particles
in the system and therefore represent a much larger compu-
tational burden than the bonded force terms. The van der
Waals forces fall off sufficiently quickly with distance that
they can typically be neglected for pairs of particles sepa-
rated by more than some cutoff distance d,y,pondeds typically
chosen between 9 and 12 A. An evermounting body of evi-
dence shows that neglecting electrostatic interactions beyond
a cutoff is inadequate for explicit solvent simulations,” so
electrostatic forces are typically computed by one of several
efficient, approximate methods that take long-range interac-
tions into account without requiring the explicit interaction
of all pairs of particles. The most common of these are mesh-
based Ewald methods such as particle-particle particle mesh
(PPPM),* particle mesh Ewald (PME),” lattice Gaussian
multigrid (LGM),** and Gaussian split Ewald (GSE),”
which use the fast Fourier transform (FFT) or a multigrid
solver to compute electrostatic potential on a mesh given a
charge distribution on that mesh. These methods require that
modified electrostatic interactions be computed explicitly
within some cutoff radius; we will assume that this cutoff
radius is chosen to be identical to the van der Waals cutoff
distance d,oppondeds S 18 typically the case. These methods
also require that charge be mapped from particles to nearby
mesh points before the FFT or multigrid computation, and
that forces on particles be calculated from potentials at
nearby mesh points afterwards. In the charge spreading com-
putation, the charge on each mesh point is determined as a
sum over nearby particles, while in the force interpolation
computation, the force on each particle is computed as a sum
over nearby mesh points. We denote by dpeaging the maxi-
mum distance between any particle and any mesh point that
“interact” in either charge spreading or force interpolation.
The value of dgyreaging depends on the parameters of the long-
range electrostatics method employed, but typical values are
around 5 A.

When one parallelizes the computation of the explicit
nonbonded force terms using the midpoint method, each pro-
cessor must import data for particles lying within a distance
T nonbonded = @nonbonded/ 2 from the boundary of its home box.
Once it has completed computation of pairwise interactions,
it must export a force contribution for each of these particles
to the respective particle’s home box. Because dy,ponded tYPI-
cally lies between 9 and 12 A, r,oupondea typically lies be-
tween 4.5 and 6 A.

If dypreading = Tnonbonded» then no additional communication
is required to support charge spreading and force interpola-
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tion. The import requirements of the explicit nonbonded
force computation ensure that each processor will import all
remote particles within a distance 7, ponged Of any mesh
point lying in the home box. Likewise, the export require-
ments of the explicit nonbonded force computation ensure
that each processor will export force contributions to this set
of remote particles. The force contribution on each remote
particle due to mesh points in the home box can be combined
with the corresponding explicit nonbonded force contribu-
tion before it is exported. In MD runs using common biomo-
lecular force fields, dpreaqing 1S usually approximately equal
tO Tponbondea- Parameters of the mesh-based Ewald method
employed can be tuned to guarantee that dpeaging
=< Fyonbonded; alternatively, the import region can be expanded
slightly to include all particles within a distance dpreqging OF
the home box boundary.

The computation of bonded force terms can also be par-
allelized using the midpoint method, which specifies that
each bonded term be computed by the processor that con-
tains the midpoint of the particles involved in that term. If
Phonded = "nonbonded—2s 18 typically the case for MD simula-
tions using common biomolecular force fields—then no ad-
ditional communication is required to support the computa-
tion of the bonded terms; the import requirements of the
explicit nonbonded force computation ensure that data for
each particle will be available on any processor that needs it
for bonded force term computation, while the export require-
ments ensure that a force contribution will be exported back
to the processor on which the particle resides.

In a MD simulation parallelized via the midpoint
method, particles migrate from one box to another as they
move. As long as the maximum distance d,,.;,, that a par-
ticle can move in a time step—typically under 0.1 A—is less
than 7,oupondeds NO €Xtra communication will be required to
migrate the particle position data. These data will be com-
municated as part of the import data required by the mid-
point method for explicit nonbonded interactions (in certain
cases these data will need to be imported from more boxes
than if particle migration had been performed separately; be-
cause migration at the end of a time step is delayed to coin-
cide with particle import during the following time step, data
for particles within a distance r,ppondeq Of @ given interaction
box may still reside on the home boxes of points within a
distance 7,onponded + motion AWAaY When import is performed).
If one uses the NT, HS, or ES methods, on the other hand,
particle migration will require additional communication of
particle positions, because proximity of a particle to an inter-
action box does not guarantee that the particle will be im-
ported by that interaction box. In some molecular dynamics
implementations, particle migration may also require com-
munication of particle state variables other than position,
such as velocity, but the midpoint method will still require
less total communication for particle migration than the NT,
HS, or ES method. Moreover, in the midpoint method, any
additional data required for migration can be included in the
same communication step as the particle position import,
avoiding the need for an additional round of communication.

Consider a MD simulation with a cubic global cell mea-
suring 80 A on a side, running on a system with 512 proces-
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sors ion an 8 X8 X 80 conﬁguration.o Suppose that dnonponded
=12 A, rbonded:4'5 A, dspreading:5 A, and dmotion:()'l A, all
typical values for MD simulations of biomolecular systems.
Using the midpoint method to parallelize the computation of
the explicit nonbonded interactions would require an import
volume of 7.9 nm?. Assuming that the bonded force calcula-
tion is also parallelized using the midpoint method, no addi-
tional communication is required for bonded force computa-
tion, charge spreading, force interpolation, or particle
position migration.

Using the HS method to parallelize the explicit non-
bonded force computation would require an import volume
of 14.0 nm?. The import region of the HS method does not
ensure that all particles within a distance dgpeqging O @ par-
ticular box are imported onto that box, so each processor will
need to import particles from an additional 2.9 nm? region to
support charge spreading, for a combined import volume of
16.9 nm>. Traditional parallelization strategies for bonded
forces, in which each term is computed either on a fixed
processor or on the processor containing a specific particle,
will require additional communication, as will particle posi-
tion migration.

Using the NT method to parallelize the explicit non-
bonded force computation would require an import volume
of 7.1 nm?. Importing all particles within a distance dgpreading
of each interaction box, in order to support charge spreading,
increases the combined import volume to 10.1 nm?®. One
could reduce communication requirements slightly by apply-
ing the NT method to charge spreading (where the x and y
base coordinates of the interaction box are those of the par-
ticle, while the z base coordinate is that of the mesh point).
Some of the communication will then take the form of
charges on mesh points, but if we assume that the amount of
data associated with mesh points in a volume of space is
comparable with the amount of data associated with particles
in the same volume, then the amount of communication re-
quired is equivalent to that associated with a combined im-
port volume of 9.8 nm?®. Optimization of the box aspect ra-
tios can reduce the equivalent import volume to 9.2 nm?, but
this requires that one either adjust the aspect ratios of the
global cell or use a grid of boxes with dimensions other than
8 X 8 X 8. Even then, the equivalent import volume is greater
than the 7.9 nm? required by the midpoint method, and the
parallelization strategy based on the NT method, unlike one
based on the midpoint method, will require additional com-
munication for the computation of bonded forces and for
particle position migration.

IV. MIDPOINT-ENSURED METHODS WITH IMPROVED
COMPUTATIONAL LOAD BALANCE

We describe a particle as being available to a processor
if the particle resides in the home box or import region of
that processor. If multiple particles are all available to the
same processor, we describe them as being coavailable to
that processor. The import region of the midpoint method
ensures that any set of particles that can be enclosed by a
sphere of radius R/2 will be coavailable to at least one pro-
cessor (the one whose home box contains their midpoint),
but frequently, the particles will also be coavailable to one or
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more additional processors. In Fig. 1, for example, particles
1 and 2 interact in the home box of particle 1 (the box la-
beled b), but these two particles are also coavailable in the
boxes labeled a, d, and e. We can take advantage of the fact
that sets of interacting particles are frequently coavailable on
more than one processor to improve computational load bal-
ance among processors. We refer to a parallelization method
whose import region includes that of the midpoint method as
a midpoint-ensured method, regardless of how it assigns par-
ticle interactions to processors, because the fact that the box
containing the midpoint of a set of interacting particles is
guaranteed to house or import all of them ensures that at
least one processor will be able to compute each required
interaction.

In order to improve load balance, midpoint-ensured
methods can assign interactions to processors based on the
spatial distribution of particles. The more information pro-
cessors share with one another about the particle distribution,
the more effectively they can balance computational load.
The relative performance of various midpoint-ensured meth-
ods depends on the relative costs of communication and
computation, on the interaction radius and box size, and on
prior statistical knowledge about the spatial distribution of
particles. We leave the full exploration of the space of pos-
sible midpoint-ensured methods as an area for further work,
but we present as an example one particular midpoint-
ensured method that can significantly improve load balance
with only minimal additional communication requirements.

For expository simplicity, we first describe this method
for a one-dimensional space where each “box” is simply an
interval of length b and where a set of m particles interact if
they all fall within some sphere of radius R/2 (i.e., within
some interval of length R). We also assume that R is no
greater than b. We number the processors such that the home
box of processor i is the ith box from the left. The compu-
tation proceeds in the following manner:

» Each processor imports all remote particles within a dis-
tance R/2 of its home box.

e Each processor finds its set of locally computable inter-
actions, consisting of all combinations of m particles
available to that processor that fall within a sphere of
radius R/2. Each processor i divides its set of locally
computable interactions into three nonoverlapping sub-
sets: interactions that are also computable on its left
neighbor (processor i—1), interactions that are also
computable on its right neighbor (processor i+ 1), and
interactions that are only computable on processor i. We
denote these subsets L;, R;, and C;, respectively, and we
denote their sizes by [;, r;, and ¢;. R; and L;,; contain
exactly the same elements, namely, all combinations of
m particles that are within a distance R/2 of the bound-
ary between box i and box i+1, so r;=1;,;.

e Each processor i sends the value of c; to its left and
right neighbors. This is the only communication re-
quired by this parallelization method beyond that re-
quired by the midpoint method. Each processor i now
has the values of ¢;_; and c;,; as well as c;, [;, and ;.

J. Chem. Phys. 124, 184109 (2006)

» Each processor i determines which of the interactions in
L; and which of the interactions in R; it will compute,
and which of these interactions it will leave to its neigh-
bors to compute. In order to ensure that each interaction
is in fact computed somewhere, neighboring processors
must make consistent decisions about the division of
labor between them. Processors i and i+1 both have
access to the values of ¢;, ¢;,, and r; (because r;=1, ).
Processor i will compute the first k; interactions in R;,
while processor i+1 will compute the last r;—k; inter-
actions, where processors i and i+ | independently com-
pute identical values for k; based on ¢;, ¢;,y, and r;. To
avoid missing or duplicating the computation of any
interaction, processors i and i+ 1 must agree on the or-
dering of the equivalent sets R; and L;,; such a consis-
tent ordering might be based on the positions of the
particles involved in each interaction, with ties broken
by other particle characteristics such as charge. In the
absence of prior statistical information about the spatial
distribution of particles, each processor computes k; as

k,-=max<0,min<r,-,round(%+%))). (1)

That is, if ¢;,; and c; are identical, then we assume that
processors i and i+1 have a comparable load, and we
therefore split the interactions in R; evenly between
them. If ¢, >c;, then we assign more than half the
interactions in R; to processor i, in an attempt to balance
the load. The max, min, and round operations in Eq. (1)
are necessitated by the fact that k; can only take on
integer values between O and r;. In the absence of such
restrictions, distributing interactions according to the
formula k;=r;/2+(c;y;—c;)/3 for all i would result in
the assignment of an identical number of interactions to
processors i and i+ 1, if ¢;_; and c;,, were both equal to
the average of c¢; and c;,;. This average represents a
reasonable estimate of c¢;_; and c;,, based on informa-
tion to which processors i and i+1 both have access.
Better load balancing could be achieved if both proces-
sors had access to ¢;_; and c;,,, or if processors had
some prior statistical information about the particle dis-
tribution (e.g., the average particle density).

Generalizations of this method to higher dimensions can
take several forms. A computationally efficient and easily
implemented generalization is available if we expand the im-
port region slightly such that its outer boundary is a rectan-
gular parallelepiped extending a distance R/2 beyond the
interaction box in the positive and negative directions along
each coordinate axis. We describe this generalization in the
two-dimensional case, where the outer boundary of the im-
port region will be a rectangle (a square if the interaction box
is a square). Assuming that the side lengths of the interaction
box are all larger than the import radius R, an individual
interaction may be computable on four boxes that share a
common corner, on two boxes that share a common edge, or
only on a single box. Our strategy is first to assign each
interaction that can be computed by two or four boxes in
neighboring columns to a unique column, and then to assign
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interactions that can be computed by boxes in neighboring
rows to a unique row. We perform these assignments by re-
peated application of a procedure similar to that used to split
R; in the one-dimensional case, with appropriate values sub-
stituted for r;, ¢;, and ¢, in Eq. (1).

More specifically, we assume that processor (i,j) is in
the ith row and the jth column. After importing particles in
its import region, processor (i,;) divides its set of locally
computable interactions into nine subsets, based on which
other processors can compute them. We denote these subsets
by S” > where a and b can each take on the values —1, 0, or
1. The value of a indicates whether the interactions in S“b
can be computed by processor (i—1,j) (in which case a
=-1), by processor (i+1,/) (in which case a=1), or neither
(in which case a=0). The value of b indicates whether the
interactions can be computed by processor (i,j—1) (in which
case b=-1), by processor (i,j+1) (in which case b=1), or
neither (in which case b=0). The shape of the import region
implies that an interaction is in S if and only if it is com-
putable in both processors (i,j) and (i+1,j+1) (this would
not be the case if the import volume were restricted to that of
the midpoint method). Neighboring processors agree on their
set of shared elements; for example S L1 contains the same
elements as Sl +1.j L ;11]] and S}, We denote the size of
Sab by S b

Each processor (i,j) sends the values s1 0 , and s}
to processors (i,j—1) and (i,j+1). For each a 1n{ 1,0, 1}
we assign the first k“1 interactions in S"1 to processors in
column j and the last s? ]l—lc“1 to processors in column j

1/+1

0 O 1.0

+1, where k" is computed by Eq. (1) with s¢ jl substituted
for r;, s"jo substltuted for ¢;, and s’ +1 substituted for c¢;,;.

Processor (i,j+1) independently computes identical column
assignments for all interactions in S“ Processors (i+1,))
and (i+1,j+1) independently compute identical column as-
signments for interactions in S 11 j], and processors (i—1,j) and
(i—1,j+1) independently compute identical column assign-
ments for interactions in S;; 11 At this point, all interactions
have been uniquely asslgned to a column of boxes. Interac-
tions are then distributed between boxes within each column
using a procedure identical to that described previously for
the one-dimensional case.

Figure 6 shows the results of applying this algorithm to a
three-dimensional system representing a protein solvated in
explicit water. We determined particle positions by placing
the reported crystal structure of the 213-residue protein Cat-
echol O-Methyltransferase (PDB code 1vid)*® in a water bath
(neutralized with the appropriate number of counter ions),
with interactions modeled using the OPLS-AA force field"
and the SPC model for water.”” A representative frame was
generated by subjecting the solvated system to minimization
followed by a 50 ps MD simulation at 300 K for equilibra-
tion. The entire chemical system contains 50 846 atoms in a
cubic global cell measuring 80.0 A per side. Figure 6(a)
shows the number of atom pair interactions assigned to each
processor using the midpoint method, assuming 64 proces-
sors in a 4 X4 X 4 configuration and an interaction radius of
R=12 A. Figure 6(b) shows the number of interactions as-
signed to each processor using the midpoint-ensured method
we have described. The maximum number of interactions
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FIG. 6. Number of interactions assigned to each processor for a biomolecu-
lar system by (a) the midpoint method and (b) a midpoint-ensured method.
The system contained 50 846 atoms in a cubic global cell measuring 80.0 A
per side, parallelized on 64 processors with R=12 A.

assigned to a processor by the midpoint method exceeds the
mean by 11.2%. With the midpoint-ensured method, the
maximum exceeds the mean by only 3.4%. In this example,
the import region of the midpoint-ensured method is larger
than that of the midpoint method by 12.1%. One could for-
mulate multidimensional midpoint-ensured methods that
would require only the import volume of the midpoint
method, at the cost of a more complex algorithm for assign-
ing interactions to processors.

As we have noted previously,8 neutral territory methods
enjoy improved load balancing properties relative to tradi-
tional spatial decompositions when the number of processors
is close to or larger than the number of particles in the sys-
tem, because neutral territory methods can calculate interac-
tions within processors that contain no particles. At high lev-
els of parallelism, the midpoint method, the ES method, and
the NT method will all result in better load balance than the
HS method. At the level of parallelism in our example, how-
ever, the differences are negligible; the maximum number of
interactions assigned to a processor exceeds the mean by
between 9% and 13% for all four methods.

One can generalize the midpoint-ensured method de-
scribed above in a straightforward manner to the case where
R is greater than the smallest side length of the box by re-
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quiring that an interaction between a set of particles always
be computed either in the box containing their midpoint or in
a neighboring box (i.e., a box that shares at least a corner
with it). Other midpoint-ensured methods that remove this
restriction can lead to further improvements in load balance
at the cost of some additional communication or complexity.
In some situations, generalizations beyond the scope of this
paper may be required to achieve satisfactory load balance.
For example, a midpoint-ensured method may take into ac-
count the fact that, in some simulations, certain interactions
are more computationally expensive than others. Likewise,
to compensate for coarse-scale variations in particle density,
one might use a midpoint-ensured method where the regions
assigned to different processors are of different shapes and
sizes.

V. CONCLUSIONS

Unlike previously described neutral territory methods,
the midpoint method applies to interactions involving more
than two particles. It requires less communication bandwidth
than traditional spatial decompositions whenever the global
cell is partitioned into boxes along more than one dimension.
The midpoint method also offers several other advantages
over both traditional spatial decomposition methods and pre-
viously described neutral territory methods, including a more
even distribution of bandwidth across communication links,
a lower maximum hop count in communication networks
with a toroidal mesh topology, and a smaller required num-
ber of send/receive cycles. The midpoint method proves ap-
plicable to problems in which each interaction involves mul-
tiple particles, with no required increase in import volume.
Variants of the midpoint method known as midpoint-ensured
methods allow for improved computational load balance
among processors relative to both the midpoint method and
traditional methods.

The midpoint method proves particularly effective for
parallelization of MD simulations using common biomolecu-
lar force fields. It applies to the evaluation of both bonded
force terms and explicit pairwise nonbonded force terms.
Moreover, its data communication requirements are such that
the communication that supports pairwise computation of
nonbonded forces also suffices for bonded force computa-
tion, for particle position migration, and for the charge
spreading and force interpolation computations associated
with the efficient evaluation of long-range electrostatic inter-
actions. At very high degrees of parallelism, certain other
neutral territory methods require asymptotically lower com-
munication bandwidth than the midpoint method.®*' In the
course of implementing a parallel molecular dynamics pack-
age for a commodity LINUX cluster, however, we have been
able to obtain better performance with the midpoint method
than with either traditional methods or previously reported
neutral territory methods for the parallelization of moder-
ately sized systems ( ~50 000 atoms ) up to at least 512
processing nodes; details of this package will be reported in
a future paper.
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APPENDIX: INTERACTIONS BETWEEN SETS OF
THREE OR MORE PARTICLES

One disadvantage of the midpoint method for interac-
tions that involve three or more particles is that determining
the center of the smallest sphere containing m particles re-
quires a nontrivial amount of computation when m=3. One
alternative is to use midpoint-ensured methods that do not
require computation of a midpoint. Another is to use an ef-
ficient approximation for the midpoint. Two such approxima-
tions are:

(1) For each of the coordinate dimensions, approximate the
coordinate of the midpoint as the arithmetic mean of
the coordinates of the particles.

(2) For each of the coordinate dimensions, approximate the
coordinate of the midpoint as the arithmetic mean of
the maximum and the minimum of the coordinates of
the particles.

When using either approximation, one needs to expand
the import region slightly to ensure that the box containing
the approximate midpoint of a set of interacting particles will
import all remote particles in that set. In the absence of any
restrictions on the spatial distribution of particles, use of ap-
proximation (1) requires that the import region contain all
particles within a distance R(1—1/m) of the interaction box
boundary, implying a substantial increase in import volume
(if m—1 particles are collocated inside the interaction box at
a distance R/m from the boundary and the mth point is lo-
cated outside the interaction box at a distance just under
R(1-1/m) from the boundary, then the midpoint will fall
within the boundary). In MD simulations using common bio-
molecular force fields, however, a smaller increase in import
volume may be sufficient, because the spatial arrangement of
the particles involved in a bonded term is not arbitrary; for
example, any pair of atoms must maintain some minimal
distance from one another under normal conditions.

A sufficient import region for use of approximation (2) is
that enclosed by a rectangular parallelepiped extending a dis-
tance R/2 beyond the interaction box in the positive and
negative directions along each coordinate axis. One can
show that a somewhat smaller region suffices, one that in-
cludes all remote particles within a rectangular parallelepi-
ped extending a distance R/4 beyond the interaction box in
the positive and negative directions along each coordinate
axis as well as all particles within a distance R/4 of that
parallelepiped. In three or fewer dimensions, for m =3, this
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import volume is always smaller than that required by ap-
proximation (1) in the absence of restrictions on the spatial
distribution of particles.

The generalization of the ES method to interactions in-
volving three or more particles (Sec. II) also requires ex-
panding the import region, because a set of particles that
interact in a particular box under this method may include a
particle at a distance greater than R from the box. A sufficient
import region includes all remote particles within a rectan-
gular parallelepiped extending a distance R/2 beyond the
interaction box in the +x, +y, and +z directions, as well as all
particles within a distance R/2 of that parallelepiped whose
X, y, and z coordinates are larger than the base coordinates of
the interaction box. This import region has the same volume
as the smaller of the aforementioned sufficient import re-
gions for use of approximation (2) with the midpoint
method; this volume is larger than the import volume of the
exact midpoint method.
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