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We present the first atomic-resolution observations of permeation
and gating in a Kþ channel, based on molecular dynamics simula-
tions of the Kv1.2 pore domain. Analysis of hundreds of simulated
permeation events revealed a detailed conduction mechanism,
resembling the Hodgkin–Keynes “knock-on”model, in which trans-
location of two selectivity filter–bound ions is driven by a third ion;
formation of this knock-on intermediate is rate determining. In
addition, at reverse or zero voltages, we observed pore closure
by a novel “hydrophobic gating” mechanism: A dewetting transi-
tion of the hydrophobic pore cavity—fastest when Kþ was not
bound in selectivity filter sites nearest the cavity—caused the open,
conducting pore to collapse into a closed, nonconducting confor-
mation. Such pore closure corroborates the idea that voltage
sensors can act to prevent pore collapse into the intrinsically more
stable, closed conformation, and it further suggests that molecular-
scale dewetting facilitates a specific biological function: Kþ channel
gating. Existing experimental data support our hypothesis that
hydrophobic gating may be a fundamental principle underlying
the gating of voltage-sensitive Kþ channels. We suggest that
hydrophobic gating explains, in part, why diverse ion channels con-
serve hydrophobic pore cavities, andwe speculate that modulation
of cavity hydration could enable structural determination of both
open and closed channels.
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Electrophysiological, structural, and computational studies
have provided a wealth of insight into the mechanisms under-

lying conductance and gating—how ionic current is switched on
and off—by ion channels, most notably potassium (Kþ) channels.
Key questions nonetheless remain about how channels perform
these functions (1–8). X-ray structures and experimental mea-
surements of ion binding and conduction (3, 8–10), as well as
computer simulations (6, 7), have suggested that Kþ ions and co-
permeating water molecules move in concert, single file, through
the ion-selective region of Kþ channels—the so-called selectivity
filter (SF; Fig. 1A). Gating involves significant protein conforma-
tional changes as the pore domain opens and closes (5, 11).

The widely accepted view of permeation across Kþ channels
follows Hodgkin and Keynes’s knock-on model (12), in which
conduction is driven by an incoming ion that “knocks on” ion(s)
already bound within the SF (7, 8, 12). Attempts to define further
the mechanistic details of Kþ ion permeation from ionic current
measurements have confronted a major challenge, however, in
that recording the positions of individual ions as they permeate
the channel has not been possible. Thus, a conduction mechanism
derived from the dynamics of the individual ions as they permeate
a selective ion channel has remained elusive.

Gating of voltage-sensitive channels, i.e., pore opening and
closing, involves voltage-sensing domain motions that trigger con-
formational changes of the S4–S5 linker and the S5 and S6 helices
(13). It is less widely appreciated that gating also has a component
sensitive to the osmolarity of the bulk surroundings (14): the open
probability (and/or single-channel conductance) of squid axon
Kþ channels is reduced under hyperosmotic stress, whereas
hypoosmotic stress has the opposite effect (15). Although an

interpretative framework that ties these observations to protein
conformational changes has been lacking, Zimmerberg et al.
demonstrated convincingly that this gating component involves
depletion of water from the protein (15). We suspect that this
phenomenon represents a molecular-scale dewetting transition
of water confined within the hydrophobic pore cavity (16). At
the single-molecule level, dewetting transitions in hydrophobic
confinements (17) have not been observed experimentally,
while simulations have focused primarily on small model systems
(18–20). Several studies have, nonetheless, suggested a connec-
tion between dewetting and gating in MscS and nAchR channels
(21, 22), underscoring the potential relevance of molecular-scale
dewetting transitions to a specific biological function—namely,
channel gating.

Using all-atom molecular dynamics (MD) simulations, we sim-
ulated ion permeation through a Kþ channel, the pore domain of
rat Kv1.2, on a microsecond timescale, thus providing direct char-
acterization of single-channel conduction based on permeation of
individual Kþ ions (Fig. 1). In support of Hodgkin and Keynes’s
ideas, we found that permeation proceeded with two SF-bound
ions awaiting knock-on from a third, incoming ion that drives
conduction. From the dynamics of the permeating ions, we pro-
pose an overall conduction mechanism that allows us to directly
deduce the rate-determining and voltage-dependent step.

Under reverse voltages, we observed—in the absence of the
voltage sensors—transition of the open, conducting pore into a
closed, nonconducting conformation. Pore closure involved mo-
lecular-scale dehydration: Water confined within the hydrophobic
cavity of the pore underwent density fluctuations, resulting in
complete (cooperative) dewetting and hydrophobic collapse of
the cavity; concurrent rearrangements of two key helical residues
locked the channel in a closed state. These observations demon-
strate that molecular-scale dewetting may be a key mechanistic
element of a biological function—channel gating—and provide
a functional explanation for conservation of hydrophobic cavities
in voltage-gated ion channels. Our results suggest that the voltage
sensors may act to prevent collapse of the pore into its intrinsi-
cally more stable closed state (23). Because hydrophobic cavities
are conserved structural motifs in voltage-gated Kþ, Naþ, and
Ca2þ ion channels (24), hydrophobic gating may be a common
component in their overall gating mechanism.

Results
Permeation. From our MD simulations, we directly recorded
ion permeation through the pore domain of the rat Kv1.2
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voltage-sensitive Kþ channel (Fig. 1) (4, 5) at experimentally ac-
cessible (depolarizing, positive) voltages (V ; 0 < V < þ180 mV,
SI Methods). The homotetrameric pore domain—S5, S6, and
S4–S5 linker helices retained, voltage sensor (helices S1–S4)
and T1 domain removed—was embedded in a lipid membrane
at a temperature of 310 K and bathed in 0.6 M KCl, a concen-
tration at which Kþ conduction is saturated (25).

In the physiologically dominant Kþ-transport direction (intra-
cellular to extracellular, Fig. 1A), we observed, on a microsecond
timescale, between 10 and 100 Kþ ion permeation events at each
applied voltage and, on aggregate, passage of over 500 ions
(Table S1). The cumulative number of complete permeation
events was found to increase linearly with time (Fig. 1B). The
current-voltage (IK–V ) relationship (26, 27) is shown in Fig. 1C.
Ions were observed to move in concert through the SF in single
file (Movie S1 andMovie S2). The passage times (τp) required for
successive ions to cross the SF were thus correlated with one an-
other (Fig. 1C, Inset). The time for individual ions to pass through
the SF varied; for example, at þ123 mV, the times varied be-
tween ∼1 and ∼47 ns. The passage times across the water-filled,
intracellular-facing pore cavity,≤1 ns, were 30- to 700-fold short-
er. Because at 0.6 M KCl the cavity was nearly always occupied by
Kþ, the passage time across the full pore was essentially equal to
the passage time across the SF alone.

We analyzed the mean waiting time (τw) between two conse-
cutive complete permeation events as a function of V . From the
meanwaiting time τw, we determined the current—voltage (IK–V )
relationship (Fig. 1C). In the linear region (V > þ51 mV), the sin-
gle-channel conductance was determined to be γk ¼ 233� 33 pS.
From our recorded Kþ ion and water molecule permeation events
(Fig. 1B and Table S1), we measured the transport ratio for those
moieties that permeated directly through the SF, excluding
mechanistically irrelevant, yet experimentally indistinguishable,
permeation events that occurred elsewhere through the protein
or the membrane. We measured IW∕IK ¼ 0.9� 0.2, essentially
independent of V (Fig. 1D).

Conduction Mechanism. We found that ions and water molecules
were predominantly bound in an alternating manner in the four
internal SF sites S1–S4 (Fig. 2 A and B). The SF also has three
peripheral sites, S0 (extracellular), and S5 and S6 (intracellular)
(2–5, 7). In contrast to existing data (3–5, 7–9, 28), we found that
ions and water molecules favored distinct sites, even at 0 mV: Kþ
preferred S2 and S4 over S1 and S3, whereas water molecules
exhibited the opposite preference.

As shown in Fig. 2B, ions moved from the intracellular to the
extracellular side of the SF by consecutively occupying the
following sites: [S4,S2]→[S3,S1]→[S2,S0]. The ion translocations
were almost entirely unidirectional in the outward direction. The
total Kþ contribution to the occupancy histogram (Fig. 2C)—that
is, the average kinetic occupancy of the SF—was measured at
OK ∼ 2.4, implying the presence of a third, incoming ion that
is involved in transport. Single-file ion permeation as enforced
by the SF implies that the passage and waiting times are related
by τp ¼ OKτw; computation of OK from these waiting times
also yielded 2.4� 0.1. Focusing on three-ion configurations,
we represented these as a two-dimensional potential of mean
force, U ¼ −RT ln pðzi; zjkÞ, where the probability of observing
a given three-ion state, pðzi; zjkÞ, is a function of the position
of the third ion entering the SF, zi, and the mean position of
the two ions already in the SF, zjk (7). From such a representation
of our data (Fig. 2D and Fig. S3), we identified four minima
corresponding to four predominant three-ion “states,” denoted
A–D in Fig. 2E. We found that permeation of a single ion included
transitions between the three-ion states: A → B → C → D
(Fig. 2D, Movie S1 and Movie S2) (7, 8, 12).

Our simulations directly demonstrate a conduction mechanism
in the spirit of the knock-on mechanism proposed in 1955 by
Hodgkin and Keynes (12), whereas a vacancy type diffusion me-
chanism is not supported by our data (12, 29). Formation of the
knock-on intermediate B (ions present in S5,[S4,S2]) is central.
Upon binding, the incoming ion in S5 causes the two internal
ions [S4,S2] to leave their otherwise preferred positions to form
C (S5,[S3,S1]) and then, quickly, D (S4,[S2,S0]). The D → A
transition involves the exit of the permeating ion from S0 and
recruitment of a new ion into the intracellular cavity. To close
the conduction cycle, this incoming ion must ultimately be
partially dehydrated and bound at S5, typically with one water
molecule positioned between it and the ion in S4. This step
regenerates the knock-on intermediate B (Fig. 2E). Analysis
(Fig. S4) showed that knock-on intermediate B was short-lived
relative to the time taken to generate it, and that state C was also
short-lived; ions in C were in their least favored internal positions,
[S3,S1] (Fig. 2C). Whereas ion recruitment into the cavity is fast
(<1 ns) and only weakly field dependent, generation of the
precise ion–water arrangement found in intermediate B is the
rate-limiting step and also the step that depends most strongly
on the applied voltage.

Gating. We consistently observed ionic conduction cessation and
pore closure at reverse (hyperpolarizing, negative) voltages and
at 0 mV (Fig. 3, Figs. S5 and S6, Table S1, and Movie S3,
Movie S4, Movie S5, and Movie S6). The time before pore clo-
sure ranged from 100 ns to more than 1 μs; at negative voltages,
the closure time correlated inversely with the magnitude of the
applied voltage (Fig. 3 and Figs. S5). At 0 mV, the closure time
was the shortest (∼100 ns). Experimentally, intact Kv1.2, with
voltage sensors retained, closes on a millisecond timescale
(1, 13); the timescale for closure of the isolated pore domain
is unknown. (No closure occurred in a control simulation of intact
Kv1.2 [0 mV, 1.7 μs], nor did the closed pore domain sponta-
neously reopen; Table S1.) The results presented here are direct
observations both of the transition from the open, conducting
pore to a nonsymmetrical closed, nonconducting pore and of
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Fig. 1. Quantitative analysis of Kv1.2 conductance. (A) Lipid-embedded rat
Kv1.2 pore domain bathed in 0.6 M KCl. (B) Ion (•) and water (×) permeation
events vs. time at selected voltages; linear fits to the ion permeation events
are shown. (C) IK–V relationship. Given the voltage lag, IK , determined from
the mean waiting time between consecutive permeation events, was fit to
the relationship (26, 27) IK ¼ aðV − V 0Þ∕f1 − exp½−bðV − V 0Þ�g [thick curve;
thin curves, 67% confidence intervals; data from simulations of Protein Data
Bank entries 2A79 (Blue) and 2R9R (Red)]. The pore conductance was derived
from the linear region; errors were estimated by Monte Carlo sampling.
(Inset) Ion passage time through SF vs. time (þ123 mV). (D) H2O∕Kþ transport
ratio as a function of V ; average is shown in pink, and individual errors were
determined by propagation of IK and IW errors. Color coding as in (C).
See SI Text and Figs. S1 and S2 for additional details.
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the closed conformation itself, for which no experimental struc-
ture has yet been determined.

Pore closure was accompanied by dehydration of the inherently
hydrophobic cavity (Fig. 4). Negative voltages (V ≤ −26 mV)
depleted Kþ ions from the cavity, leaving it temporarily occupied
only by water, whereas positive voltages (V ≥ þ26 mV) ensured
steady cavity occupancy by water molecules and hydrated ions
(Fig. 4A and Fig. S5). The water-vapor equilibrium of water
confined within the now ion-depleted hydrophobic cavity shifted
toward the vapor state (17), and pressure and density fluctua-
tions in contiguous bulk water facilitated essentially complete
dehydration—a dewetting transition—of the cavity (Fig. 4 B–F).

The water density within the Kv1.2 cavity was initially similar
to that of bulk water. As closure proceeded, the water density
fluctuated dramatically on a timescale of hundreds of nanosec-
onds (Fig. 4B), and the cavity partially or fully emptied in a co-
operative transition (Fig. 4F). At the three most hyperpolarizing
voltages, the cavity completely emptied and the pore fully closed
on a microsecond timescale (Fig. 4 C–I and Movie S3). At the
smallest negative voltage that resulted in pore closure (−51 mV),
the cavity did frequent the completely dewetted state, but ended,
after 2 μs, in a partially dewetted state.

The partially dewetted state was an intermediate observed dur-
ing all pore closures (Fig. 4 D, F, and H). This state is character-
ized by a cavity hydration level midway between the completely
wetted, open cavity and the completely dewetted, closed cavity. In
the partially dewetted state, a single file of water molecules
formed across the tightest pore constriction, the conserved
Pro405-Val406-Pro407 motif (“PxP,” “PVP” in Kv1.2; Fig. 4H,
Figs. S6 and S7, and Movie S4). A single file is insufficient to

facilitate ion passage through this constriction, where at most
two water molecules can coordinate the ion along the pore axis
(in bulk water, six to eight water molecules coordinate one Kþ);
this deficit of coordinating water molecules cannot be compen-
sated by favorable interactions with the protein. Thus, even
the partially dewetted state is effectively closed.

Conformational Changes. Pore closure following cavity dewetting
involved pronounced conformational changes of the S5 and S6
helices, the S4-S5 linker helix, and the cavity-lining hydrophobic
residues. Rearrangements of two key helix residues, Pro405 (S6)
and Leu331 (S5), ultimately locked the channel in a closed
conformation (Fig. 5, Fig. S7, and Movie S5). The S4-S5 linker
moved toward the intracellular side by less than a helix diameter
(Fig. 5A). The changes we observed support a previously
hypothesized electromechanical linkage between voltage sensor
motion and conformational changes of the pore domain (4, 5).
Apparently, only modest (∼6 Å) linker displacements accompany
larger pore conformational changes; because the voltage sensors
were absent, the observed pore closure was exclusively driven by
cavity dewetting and not triggered by the linker displacement.

We found that helix S6 straightened at the PVP motif, a motif
present in many Kþ channels and that has been demonstrated to
be critical to channel gating (30). Straightening typically involved
two of the four subunits, thereby allowing opposite PVP motifs to
approach each other (Fig. 5A and B); in some cases, motion of
even a single subunit was sufficient to form an ion-impermeable
constriction. At negative voltages, the tightest constriction consis-
tently developed at Pro407 (the second PVP motif Pro residue):
opposite Pro407 Cα atoms were ∼13 Å apart in the open pore but
only ∼5 Å apart in the closed pore. As S6 straightened, the tightly
packed side chains of Pro405 and Leu331 (in helix S5 of the
same subunit) exchanged positions, locking S6 into a straight
conformation (Fig. 5C, Fig. S7, and Movie S6). At 0 mV, a tight
constriction also developed at Ile402.

Discussion
Permeation. The single-channel conductance, γK ¼ 233� 33 pS,
obtained from the linear part of our IK–V curve (Fig. 1C,
V > þ51 mV), lies within threefold of the experimental value
of 83 pS [intact Shaker, conductance ∼ 45 pS at 295 K, 0.6 M
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KCl (25); temperature-corrected assuming that γK increases
∼1.5-fold per 10 K of temperature difference [ΔT], i.e., Q10 ¼
1.5, γK;310 ¼ γK;295Q

ΔT∕10
10 (31); also, lack of the T1 domain in

the simulation may lead to decreased access resistance]. The un-
expected absence of current at jV j < þ51 mV (Fig. 1C) suggests
that an unidentified energetic barrier to conduction may be pre-

sent at low voltages. This barrier may result from a force field
artifact (e.g., lack of polarizability) or the absence of the voltage
sensors, which could alter fluctuations of the SF that influence
permeation or change the electrostatic potential (barrier) across
the pore.

Macroscopic measurements in different Kþ channels have sug-
gested that about onewatermolecule, on average, is cotransported
with each ion (32, 33), and a generic H2O∕Kþ transport ratio
of unity has been widely assumed. Our measurement of
IW∕IK ¼ 0.9� 0.2 agrees well with experiment and suggests that
this aspect of the conduction mechanism is invariant across the
Kþ channel family. The satisfactory agreement between the
values for ion and water transport obtained in experiments and
in our simulations suggests overall that our results can be used to
provide further insight into the mechanistic details of ion per-
meation.

Our kinetically derived results for the Kv1.2 pore (Fig. 2D)
conform to earlier thermodynamics-based proposals for KcsA
(7, 8), namely, that four states are central to the conduction
process. Direct recording of the individual ion positions during
permeation permitted us to extend these proposals by directly
identifying a minimal conduction cycle in which the rate-deter-
mining step is dehydration of a third, incoming Kþ ion (Fig. 2E).
Specifically, permeation occurs when two SF-bound ions are
“knocked-on” by the incoming ion. In line with Hodgkin and
Keynes’s measured flux exponent ofOK ∼ 2.5 (12), corresponding
to the average SF kinetic ion occupancy, we measured OK ∼ 2.4
from our simulations, indicating the mandatory presence of a
third ion for transport. Beyond Hodgkin and Keynes’s interpre-
tation of their own measurements, we find that formation of this
knock-on intermediate is indeed the rate-determining—and the
most voltage-dependent—step in Kþ channel conduction.

Although existing crystallographic data indicate that the ion
occupancy of the SF is largely uniform (8, 9), we found that ions
and water molecules favored distinct SF sites: Kþ preferred S2
and S4 over S1 and S3, whereas water molecules exhibited the
opposite preference. The distinct site preferences we observed
may reflect the differing coordination requirements of water
molecules and Kþ ions. Prior analysis of ion permeation through
KcsA suggested that uniform ion occupancy in the SF is a pre-
requisite for high throughput by the knock-on mechanism (8).
That model did, however, include the possibility of a nonuniform
ion distribution across the SF without dramatically decreasing
overall flux. Our analysis indicates that Kþ conduction by the
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knock-on mechanism may proceed through an SF that is not
necessarily uniformly occupied (Fig. 2 B and C).

Gating. We directly observed the transition between an open,
conducting pore of a voltage-sensitive Kþ channel and a closed,
nonconducting conformation. In the absence of the voltage sen-
sors, this transition occurred within a few microseconds by dehy-
dration and concurrent hydrophobic collapse of the water-filled
pore cavity. Molecular-scale dewetting transitions in proteins
have not been captured experimentally, but only by MD simula-
tions of small model systems (18–20); extremely rapid dewetting
was also observed in short (<20 ns) simulations of the (closed)
MscS mechanosensitive channel (21). Our observations of pore
closure represent conclusive demonstration of molecular-scale
dewetting in the context of a specific biological function—gating
of an ion channel.

In addition to the commonly appreciated voltage-sensitive
component, an additional component sensitive to osmotic pres-
sure is likely an inherent part of (voltage-sensitive) ion channel
gating (14, 34). We have identified here the source of this osmo-
tically sensitive gating component in Kþ channels—molecular-
scale dewetting—with a hydrophobic gating mechanism. Osmotic
sensitivity has been observed experimentally for Kþ channels:
Subjecting squid axon voltage-gated Kþ channels to a uniform
hyperosmotic stress reduced the open probability (and/or the sin-
gle-channel conductance), whereas a hypoosmotic stress had the
opposite effect (15). Similar observations were made for crayfish
voltage-gated Naþ channels (35). The concurrent gating volume
change or, equivalently, the number of water molecules evacuat-
ing the squid Kþ channel—presumably the cavity—upon the con-
formational change was measured to be 40–50 water molecules,
identical to the reduction in the cavity water occupancy we found
upon channel closure (Fig. 4F).

Extensive electrophysiological data further support our propo-
sal that hydrophobic gating and the conformational transition
leading to a closed pore are elements of the overall gating
mechanism in Shaker-family Kþ channels. First, the narrowest
constriction formed at the PVP motif. Accessibility experiments
in Shaker revealed that Val406 (Kv1.2 numbering is used in the
following) in the PVP motif is 103–105 times more accessible in
the open state than in the closed state. Conversely, Val410, three
residues below the PVP constriction, has nearly invariant high
accessibility (36). Second, gating requires the S6 proline residues,
as shown by Kv1.5 mutagenesis studies, although their exact
locations are not critical (30).

Third, alteration of cavity hydrophobicity shifts the open/closed
equilibrium (15, 37–42). Substitution of Shaker Pro407 by hydro-
philic residues (for example, Pro407Asp) yields constitutively open
channels, whereas hydrophobic mutants, such as Val410Trp, are
constitutively closed. The Pro407Asp/Val410Trp double mutant
control, which exhibits near-normal gating, indicates that all of
these mutants (37, 38), as well as a Kv2.1-like Kv1.1 mutant
(PVP → PIP) (39), alter the open/closed equilibrium bymodifying
the hydrophobicity of the cavity. The Shaker Ile402Cys mutation
also slows channel closure, as seen by increased open-channel ac-
tivity on hyperpolarization (40). Likewise, relative to Kþ, Rbþ and
Csþ have longer pore residence times and slow channel closure
(41). Presumably these ions favor peripheral SF sites S5 and S6,
given their preference for SF sites S1 and S3 relative to Kþ (see
also Fig. 2C) (8, 9), thereby keeping the cavity more hydrated (42).

The hydrophobic gating hypothesis is in accord with the
open-channel blocking properties of tetraethylammonium
(TEA). Intracellular TEA blockade typically prevents Kþ channel
closure (43). In the Shaker Ile402Cys mutant, however, TEA can
be trapped inside the closed cavity. The increased polarity and
larger volume of the cavity in this mutant enables trapping of
the hydrophobic TEA cation. The ability of hydrophobic (organ-
ic) cations to modulate the open vs. closed equilibrium is exqui-

sitely sensitive to minor variations in channel sequence and the
molecular details of the blocker itself [e.g., TEA is trapped in
the closed cavity of Shaker Ile402Cys, but hydrophilic N-methyl-
glucamine cannot be trapped within the closed cavity (42)].

Consistent with these experimental data, we observed the fast-
est dewetting transition and pore closure time (∼100 ns) at 0 mV.
At this voltage, Kþ populated only site S4, not sites S5 or S6, at
the SF-cavity boundary, which allowed the four Ile402 residues to
snap into a tight hydrophobic constriction at the SF intracellular
entrance. This constriction reinforced the overall cavity hydro-
phobic confinement, thereby accelerating the dewetting transi-
tion relative to the negative voltages (V ≤ −26 mV). Due to
the applied negative potential, Kþ ions were frequently forced
into S5 and S6; the significant population of Kþ in these sites
prevented formation of the Ile402 constriction. At −26 mV, oc-
casional Kþ entry from the intracellular side into the cavity
further ensured cavity hydration, delaying the closure time to be-
yond 2 μs (Fig. S5). (Because pore closure depends on the cavity
electrostatics, the precise voltage where closure is fastest—here,
coincidentally, 0 mV—is likely sensitive to the membrane dipolar
potential, Kþ concentration, and [absent] voltage sensors.)
Crystal structures of Gly77D-Ala KcsA (44) and MlotiK1 (45)
in their closed states reveal ion-depleted cavities, presumably
due to a hydrophobic constriction similar to that formed by
Kv1.2 Ile402 (e.g., KcsA Phe103).

Fourth, whereas most Shaker S5 and S6 alanine mutants
exhibit simple, quantitative differences in gating behavior, a few
mutants exhibit strikingly abnormal, multiphasic I–V curves.
Abnormalmutants includeLeu331Ala,Val406Ala, andVal410Ala
(23). Notably, the Leu331Ala mutation, as well as separate results
on a Pro405Ala mutant (46), suggests that the Leu331-Pro405
interlock (Fig. 5C) is critical for stabilizing the closed state.

Perspectives. Hydrophobic gating is, we believe, closely linked to
channel rectification. Channels with small hydrophobic cavities
exhibit decreased or no inward conduction; at negative voltages
they outwardly rectify, precisely because their small cavities are
prone to undergo dewetting leading to pore closure. KcsA, which
possesses a relatively small (Kv1.2-like) hydrophobic cavity, exhi-
bits such outward rectification (47). By contrast, MthK and BK,
two high-conductance, Ca2þ-activated Kþ channels that possess
larger hydrophobic cavities, do not exhibit outward rectification,
suggesting that these channels are less prone to undergo dewet-
ting and pore closure (48, 49). Inward rectifying Kþ channels such
as Kir2.2 (50) possess small cavities, similar to KcsA or Kv1.2, but
their more hydrophilic cavity lining (e.g., Ile402 substituted by
Asp or Asn; Fig. S8) mitigates dewetting, which presumably helps
maintain inward conduction through an open pore. It is particu-
larly noteworthy that the Pro407Asp mutation in Shaker signifi-
cantly weakens the outward rectification and makes the channel
inward rectifying (37). Similarly, the presence of cavity-lining gly-
cine residues in leak (K2P) channels increases cavity size and de-
creases cavity hydrophobicity, leading to the unusual constitutive
conduction properties of these channels (51). Point mutations or
experimental conditions that favor cavity dewetting may thus be
useful for obtaining future crystal structures of voltage-sensitive
channels in closed conformations.

Beyond electromechanical linkages (4, 5, 13), voltage sensor
repositioning in response to membrane potential changes may
further adjust the open/closed channel equilibrium by tuning
the electrostatic potential—and, consequently, the water
stability—within the cavity. In particular, our results suggest that
the sensors minimize the risk of cavity collapse; Yifrach and
MacKinnon similarly proposed, on the basis of mutational data,
that the natural state of the pore is closed and that the voltage
sensors must exert work on the pore to open it (23).

We suggest that hydrophobic gating—which furnishes a
functional argument for the not fully understood conservation
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of cavity hydrophobicity—is a central component of the overall
gating mechanism of many ion channels (Fig. S8). Although
the details may vary, hydrophobic gating is a mechanism that
likely operates in several Kþ, Naþ, and Ca2þ channels (24),
and perhaps in other ion channels as well (21, 22, 52, 53).

Methods
Simulations were performed using Desmond (54) with the CHARMM27 force
field (with backbone potential [CMAP] correction and TIP3P water model)
(55, 56) and were analyzed using HiMach (57). The ionic current was driven
by application (54) of a constant electric field, E, across the simulation box, a
method known to mimic accurately a voltage clamp experiment (58). To

obtain the applied voltage, V , from E, we assumed that the entire potential
drop occurs across the SF (6, 59); this implies V ¼ EΔz, where
Δz ¼ 13.4� 0.2 Å is the distance between Thr374∶Oγ and Tyr377∶O,
averaged over all simulations at depolarizing voltages. All simulations were
performed at experimentally accessible voltages, −180 < V < þ180 mV.
Throughout, error bars and “�” represent SEM. For additional methods,
see SI Text.
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