
Post-Silicon Debug Using
Formal Verification Waypoints

C. Richard Ho, Michael Theobald, Brannon Batson, J.P. Grossman, Stanley C. Wang,
Joseph Gagliardo, Martin M. Deneroff, Ron O. Dror, David E. Shaw*

D. E. Shaw Research, New York, NY 10036, USA

{Richard.Ho, Michael.Theobald, Brannon.Batson, JP.Grossman, Stan.Wang,

Joe.Gagliardo, Marty.Deneroff, Ron.Dror, David.Shaw}@DEShawResearch.com

Abstract—Applying formal methods to assist in the post-silicon
debugging of complex digital designs presents challenges that
are distinct from those found in pre-silicon formal verification.
In post-silicon debug, a set of observed events or conditions
describes a failure scenario. The task is to identify a reasonably
general set of input and hardware state conditions that
inevitably produces that failure scenario. That set of conditions
may be represented in the form of a counterexample to a desired
property. Modern formal verification methods are especially
adept at finding counterexamples to properties, and can often do
so efficiently in large state spaces. This paper describes a
method of assisting the discovery of counterexamples using user-
hypothesized preconditions, or waypoints, of the failure. Each
waypoint is an event that is believed to occur prior to the
observed failure of the target property. By guiding formal
analysis through a sequence of waypoints, the time required to
find a counterexample of the target property can be significantly
reduced. A specific case study is presented to illustrate the
application and performance of our method using an actual
example from the post-silicon debug of a 33-million–gate chip.

I. INTRODUCTION
The post-silicon debug of functional errors in large, highly

complex Application-Specific Integrated Circuits (ASICs)
frequently requires extensive detective work to isolate
symptoms and identify underlying causes. Lack of
observability, long runtimes to reach the error state, and
imprecise control of event timing make many post-silicon bug
hunts tedious and time-consuming endeavors.

In this paper, we describe one such bug hunt involving the
Anton ASIC [1], a 33-million–gate chip designed to accelerate
molecular dynamics (MD) calculations. In this case, the ASIC
exhibited erroneous behavior resulting in occasional memory
corruption. The symptoms of the error (the error signature)
were analyzed and a hypothesis of how the error occurred was
formulated. This hypothesis involved certain complex corner-
case conditions and particular event sequences. Extensive
random simulation targeting the bug, however, did not
succeed in validating this hypothesis. This was primarily a
result of the fact that the bug appeared only in a specific, hard-
to-reach hardware state whose occurrence was dependent on

the precise timing of input stimuli.

The bug was eventually isolated and reproduced through a
process of formal verification based on model checking [2].
In particular, we used an approach based on targeting sets of
conditions called waypoints, which are hypothesized by the
user to necessarily occur en route to the bug in question. The
bug was found to lie beyond the practical reach of standard
(bounded) model checking from a reset state, which could
only complete exhaustive analysis to 65 cycles within a three-
day time limit and a 32-GB memory limit. Using the method
described here, however, the hypothesized cause of the bug
was analyzed to generate waypoints, which were then targeted
by model checking. Once an input sequence was found that
led to a given waypoint, a state trace was generated, then used
as the initialization sequence for model checking to the next
waypoint or to the eventual error condition.

In this way, formal verification was guided to find the bug
at a depth of 69 cycles from reset within ten hours of
computation. Although the bug was only four cycles beyond
the exhaustive analysis from reset, those additional cycles
have high computational complexity, which would have made
analysis using standard model checking impractical to
complete within a reasonable amount of time. By using
waypoints to reduce the amount of analysis needed to find the
error trace, however, we were able to validate the
hypothesized cause of the bug without a prohibitive
expenditure of computational resources. This approach also
allowed the analysis of conditions around the bug, and
ultimately confirmed that the error would no longer occur
after the design was corrected.

In the remainder of this paper, we discuss each of the
major steps in our method, including (1) converting error
symptoms into assertions, (2) finding the right level of logic to
analyze so that the bug can be exhibited, (3) choosing the
appropriate places in the design to abstract logic, (4) setting
the necessary input constraints, and (5) finding the trace to the
bug. We also present runtime data comparing standard model
checking of the error assertion to guided model checking
using waypoints.

* Correspondence to David.Shaw@DEShawResearch.com.
 David E. Shaw is also with the Center for Computational Biology and
 Bioinformatics, Columbia University, New York, NY 10032.

II. POST-SILICON FORMAL VERIFICATION
Most complex ASICs require post-silicon debug. Much

previous work has occurred in developing techniques to
increase observability of the internal state in the fabricated
design [3] as well as in techniques for automatically isolating
erroneous logic [4]. One of the steps in post-silicon debug is
to confirm that a hypothesis about an error can really account
for the observed symptoms. The design team wants to know
the exact hardware state and input sequence that would trigger
the error.

Formal analysis, in particular model checking, has proved
useful for finding the specific cause of a known error
condition [5]. If the symptoms of the error can be represented
as a property, then a counterexample (cex) to the property
gives the sequence of stimuli and design-state transitions (a
trace) that lead to the error.

Prior knowledge of the existence of such a counterexample
sidesteps some of the difficulties of standard model checking
on a property whose truth is not known for certain. This
section discusses the optimizations that can be applied for
post-silicon debug with formal verification. First, the
selection of model-checking algorithms can be restricted to
those optimized for finding counterexamples; second, the
accuracy and generality of input constraints can be relaxed
with information from the error signature; and third, model
checking can be applied with waypoints to reduce the amount
of analysis needed to find the trace.

A. Model-Checking Algorithms
Model checking is the mathematical process of

determining whether a property holds true for a particular
model of a system. In the context of this paper, a model is a
representation of the hardware design. Model checking can
produce either (1) a proof that the property holds in the model;
or (2) a counterexample showing the input- and state-sequence
that demonstrates a violation of the property within the model.
In practice, a third result (undetermined) often occurs because
the model checking algorithm runs out of time or memory
before either of the definitive results can be obtained.

There are several algorithms for model checking [6],
including explicit state enumeration, symbolic model checking
with binary-decision diagrams, satisfiability-based model
checking (also known as SAT), induction, interpolation, and
variations and improvements of above algorithms (symmetry,
abstraction refinement, etc.). For the purpose of finding a
trace to an error signature, we can limit the choice of model-
checking algorithm to those which are well-suited to finding
counterexamples, such as SAT.

Finding long counterexamples is a key problem in model
checking. Yang and Dill [7] use preconditions of a property to
guide model checking. Ganai et al. [8] use manually and
automatically-generated hints from a design description for
difficult to reach coverage points. Bjesse and Kukula [9]

exploit abstractions to generate long counterexamples. Wang
et al. [10] have developed a technique that targets long bugs
that have a regular pattern, which can be proved by induction.

B. Accuracy of Input Constraints
In pre-silicon verification, the accuracy of input constraints

is a major factor in the success of formal verification. Without
an accurate and complete set of input constraints,
counterexamples may be found that utilize illegal input
sequences. Analyzing such illegal counterexamples not only
wastes time, but also prevents the possibility of a proof being
found for the property until all illegal sequences that can
produce a counterexample are excluded from analysis.

Fortunately, in post-silicon debug model checking, this
stringent requirement can be relaxed. In particular, since
model checking is typically deployed only if the trace of the
error signature is difficult to obtain in simulation, it is often
the case that even traces with some illegal stimuli can shed
light on the conditions necessary to exercise the
bug.

In addition, some aspects of the input sequence needed to
exercise the bug may be known from the observed error; it is
therefore possible to overconstrain the input space (relative to
the full set of legal stimuli) to limit or “guide” the formal
analysis. Consider the situation, for example, of a bug that

Figure 1. Setting input constraints

only occurs on a read operation following a cache-miss. The
input constraints can then be set so that analysis only occurs
down paths that include a cache-miss followed by a read.
Such over-constraining of inputs would not be appropriate in
pre-silicon verification because it may mask bugs.

Some commercial SAT implementations do not actually
limit formal analysis to legal input sequences, but do limit the
traces presented to the user, so they may not observe a
performance improvement from over-constraining. There is
still a benefit, however, from the reduction of traces to be
debugged, as the only traces to be considered are those where
known input events occur. Noting these relaxed requirements,
the methodology for post-silicon debug, shown in Fig. 1,
becomes a mixture of over- and underconstraining. One starts
with constraints that match the observed error signature.
These constraints may limit the possible input sequences to a
set that is much smaller that the full set of legal inputs. All
other inputs should be lightly constrained so as not to prevent
any legal input sequences. Additional input constraints can
then be added to remove illegal sequences observed in
counterexamples that are found.

C. Formal Verification Waypoints
When navigating to an unfamiliar destination, savvy

travelers occasionally use waypoints (also known as
landmarks or guideposts) to check that they are progressing on
the right path towards their desired destination. A similar
concept can be utilized when trying to find a trace to an error
signature.

Yang and Dill [7] proposed using interesting or required
preconditions (which they called “guideposts”) of a property
to assist explicit state-enumeration model checkers. These
preconditions are events defined by engineers using
knowledge about the design and the target property to provide
sub-goals for formal analysis. Yang and Dill used guideposts
to influence the order of state-space exploration so that paths
which encountered more preconditions would be explored
first.

In this work, we use similarly defined preconditions. Our
use of the preconditions (“waypoints”), however, is to propel
the initial state to be used in model checking deep into the
state-space of the model. The steps for using waypoints to
find a trace to an error signature are:

1. Identify one or more waypoints.

2. Order the waypoints 1, …, n, with waypoint n as the error
signature.

3. Starting with waypoint 1 and an initialization sequence
that is just the reset sequence:

a. Set the waypoint as the target property.

b. Set the initialization sequence for model
checker.

c. Model check.

d. If no trace is found, return to step (1) and
identify additional waypoints prior to waypoint
1.

e. If a trace is found, save the trace in the format to
be used as initialization sequence in step (b) for
model checking.

f. Set the next waypoint as the target property.

g. Return to step (c).

When one uses a trace to a waypoint as the initialization
sequence for model checking the next waypoint, some state
values of the model that the user believes are required to reach
the target property get set up. Using waypoints to set up these
intermediate states ensures that only reachable combinations
of states are used, as opposed to setting up the state in some
arbitrary way that may not be reachable from reset. Doing so
reduces the scope of analysis at each step, as shown in Fig. 2.

Figure 2. Waypoints reduce analysis region

Waypoints, deployed in this manner, are useful for
targeting a particular property believed to be false, i.e. a
property for which a counterexample exists. There is,
however, no guarantee that the trace to an error signature will
pass through any or all of the waypoints defined by a user. It
is possible for a user to misunderstand an error signature and
define waypoints in such a way as to prevent a model checker
from finding a trace. This will become evident when a trace
cannot be found to any one of the waypoints in the sequence
1, …, n of waypoints within reasonable limits of time and
memory. The only recourse when this happens is to re-
examine the waypoints and alter them or their sequencing.

III. POST-SILICON DEBUG CASE STUDY
This section provides a case study of applications of

formal verification with waypoints for the post-silicon debug
of the Anton ASIC. We start with a brief overview of the
Anton architecture. A more detailed explanation of the
architecture and how it is used to perform MD computations
can be found in [1].

A. The Anton ASIC
Anton is designed to accelerate MD computations, which

model the motion of a collection of atoms according to
Newton’s laws of physics. An MD computation divides
continuous time into a sequence of discrete time steps.
Typically, each time step represents a few femtoseconds of
physical time; Anton is intended to run MD computations for
up to milliseconds of physical time (close to a trillion discrete
time steps).

Anton achieves the speed required for computations of this
scale through a combination of specialized hardware, high-
bandwidth communication, and fine-grained parallelism. The
Anton ASIC (block diagram shown in Fig. 3) consists of two
main computational subsystems: the high-throughput
interaction subsystem (HTIS) [11], which computes pairwise
interactions, and the flexible subsystem [12], which contains a
number of programmable processors. Two memory
controllers are connected to off-chip dynamic random-access
memory (DRAM). A host interface communicates with an
external host processor used to control and monitor the ASIC,
and six communication channels connect the ASIC to its
neighbors in the three-dimensional torus network. These
components communicate with one another by sending
packets over a bidirectional on-chip communication ring,
which consists of six identical routers connected in a loop.

The first Anton ASICs were fabricated in late 2007. In the
bring-up process, various sample MD simulations were run.
The successful runs are instructive, but during bring-up, it is

the runs that exhibit problems that provide the most valuable
(hardware and software) debug information. A run can
encounter problems in two ways: (1) the run can produce an
internal error; and (2) the MD simulation can behave in an
unexpected manner, for example, if the energy of the MD
system deviates substantially from the expected range. In
each case, root-cause analysis can be undertaken using
hardware and software instrumentation that reveals details
about the operation of the hardware. In many cases, the
embedded software of Anton required modifications, but in
several cases hardware errors were indicated. None of the
hardware errors were critical; each had an acceptable software
workaround. Nevertheless, investigations were launched to
find the root cause of each error, so as to ensure we
completely understood the problem and to consider possible
hardware fixes for future versions of the Anton ASIC.

One particular error found was described as follows
(implementation-specific names have been replaced with
functional descriptions for ease of understanding):

This application-level error symptom translates to a

memory corruption problem in the hardware. It says that
occasionally (only on a certain time step of the MD run), some
data (representing forces calculated by the HTIS) that should
accumulate in one memory location ended up at the wrong
address in memory.

B. Developing a Theory of the Error
Analysis of the communication patterns between

<memory area 1> and <memory area 2> revealed that one
explanation that would be consistent with the error was if a
race condition arose between the fill and evict operations of
the memory system.

Specifically, if an atomic accumulate-store data packet
arrives at the memory controller such that it is supposed to
evict <memory area 1> from the cache, the sequence of
events that should occur is (Fig. 4):

1. Eviction: <memory area 1> written back to DRAM

2. Store: <packet data> is stored in cache line

3. Fill: <memory area 2> is fetched from DRAM and
added to <packet data> in cache line

(The eviction and store operations are atomic)

“Forces for packet 0 of
 <memory area 1> and <memory area 2>
are sometimes wrong on
 time step #447 of a <MD system> run.

It appears that the HTIS forces that are
addressed to
 packet 0 of <memory area 2>
were delivered to
 packet 0 of <memory area 1>.”

Flexible
Subsystem

High-
Throughput
Interaction
Subsystem

M
em

or
y

C
on

tro
lle

r

Host
Interface

Channel Channel Channel

C
ha

nn
el

C

ha
nn

el

C
ha

nn
el

R
ou

te
r

Router Router

R
ou

te
r

Memory Controller

R
ou

te
r

Router

DRAM
D

R
A

M

+Z

+Y +X

-Z

-X

-Y Host Processor

Communication Ring

Figure 3. Anton ASIC Block Diagram

Figure 4. Correct memory operation

Now suppose that a race condition causes step 3 to occur
first:

1x. Fill: <memory area 2> is fetched from DRAM and
added to <memory area 1> in the cache line

2x. Eviction: incorrect <memory area 1> + <memory
area 2> is written back to DRAM

3x. Store: <packet data> is stored in cache line

The result is that the forces that have been accumulating in
<memory area 2> have been incorrectly added to <memory
area 1>. Immediately after step 1x, all the forces that are
intended to be summed at <memory area 2> have effectively
been transferred to <memory area 1>. This incorrect update
is then saved to DRAM in step 2x (Fig. 5).

This hypothesized cause of the error, among all the
theories brainstormed by the engineering team, was the only
one consistent with the observed symptoms. The next step
was to identify how such a race condition might occur in the
hardware implementation.

C. Identifying Error Mechanism in Implementation
With a conceptual theory of the error in hand, the next step

was to match the steps of the theory to operations in the
hardware implementation. This step requires detailed
knowledge of the register-transfer level (RTL) description to
identify the corresponding logic and operations to match the
events in the conceptual theory of the error. Fig. 6 shows the
relevant blocks in the memory controller of the Anton ASIC.

The error sequence starts with a read-modify-write (rmw)
operation arriving at the memory controller and causing a
cache miss/evict operation. This simply means that the
memory line that the rmw-operation refers to is not currently
stored in the cache and needs to be brought in from DRAM.
To process the miss/evict operation, the control pipeline (CP)

issues a miss/evict command to the data pipeline (DP) to save
(back to DRAM) the current contents of the cache line that
will be used for the operation. Simultaneously, it issues a
read request to the bank controller (BC) to fetch the targeted
memory line.

To prevent a race condition between the miss/evict and the
read operations, the CP issues a 3-bit field (dpstall) with both
operations. The FIFO to queue up the miss/evict operations is
five levels deep, so three bits to hold dpstall is sufficient to
prevent duplicate values. The read operation (in the BC) must
wait for the corresponding dpstall value to be sent from the
DP before it issues the read operation. For its part, the DP
should only issue the corresponding dpstall value when it is
complete with the miss/evict operation. In this way, the
implementation is supposed to guarantee the order of
operations shown in Fig. 4.

Packet Data

0. Packet arrives

1. Cache line
evicted to DRAM

2. Packet Data
stored in cache

line

3. MemArea 2 is
added to cache line

CACHE

DRAM
MemArea 1

MemArea 2 +
Packet Data

MemArea 1

MemArea 2

DRAM

MemArea 1

MemArea 2

Figure 5. Race condition causes memory corruption

Figure 6. Memory controller blocks

The only event sequence that would allow the fill
operation to overtake the evict operation would be if the
dpstall signal should wrap and issue the same dpstall tag to
two miss/evict operations. Then, when the first miss/evict
operation completes and forwards its dpstall tag to the BC,
both corresponding read commands are unblocked. This
would enable the second read operation to get ahead of its
corresponding miss/evict operation.

Hence, the error signature could result from the following
sequence of events: (1) a single dpstall tag sent from the DP to
the BC unblocks multiple read operation (Waypoint 1); (2) fill
of cache line with particular dpstall tag (Waypoint 2); and (3)
store of cache line with same dpstall tag, indicating that the
fill operation has occurred before the evict operation (Error
Signature). This sequence becomes the set of waypoints used
to find the error signature.

D. Confirming Theory and Verifying Fix
Once an error mechanism in the hardware implementation

is identified as a candidate root cause, it is necessary to
confirm that the sequence of events in the mechanism occur as
predicted and result in the error signature. In many cases, this
can be accomplished in simulation with modifications to
existing test environments. In other cases, ours included,
simulation cannot activate the full sequence of events
hypothesized in the error mechanism. Formal verification
(model checking) provides an alternative method to do so.
The necessary steps follow the standard formal verification
methodology:

1. Write assertions to detect error mechanism. Our
assertions were created with the SystemVerilog
Assertion (SVA) language as well as the Open
Verification Library (OVL). The three main
assertions written covered the two waypoints
identified and the final error signature.

2. Determine correct cone of analysis. The cone of
analysis is the logic within the transitive fanin of the
target property. Ideally, the entire design is analyzed
while looking for the error. This is not practical in
any but the smallest designs. Choosing a subset of the
design is common practice for FV; on the other hand,
choosing a design subset that is too small leads to
greater difficulties in defining the input constraints for
FV. Also, it is necessary to ensure that all the logic
involved in the error is captured within the design
subset. For our particular case study, the logic needs
to include the CP, DP and BC blocks of the memory
controller. It turns out that these blocks encapsulate
most of the logic on the memory controller subsystem.
In all, this logic is estimated be about 800k gates.

3. Abstract unnecessary logic. This step in the standard
FV methodology identifies logic that can be
simplified to reduce the analysis region. Common

abstractions include counters and deep FIFOs. These
can usually be reduced to versions that have abstract
values that represent groups of concrete values, such
as a counter that only has values for empty, partially
full and full. If the value of the counter between when
it is empty and when it is full is irrelevant to other
events, this simplification reduces the state space of
analysis enormously. Abstractions of this sort over-
approximate the state space of the design and are safe
for proofs of properties. For counterexamples,
however, they frequently lead to false traces that are
not possible in the full logic, or to traces that are
inconsistent with the events that the designer is
expecting to see. Hence, when searching for an error
signature, abstractions must be made with even more
care, and avoided if possible. The example in our
case study was performed with no abstractions.

4. Set input constraints. The method of setting input
constraints, when none are present, was described in
section II.B. For our error signature, a full set of input
constraints for the analysis region (the memory
controller) was available from pre-silicon verification.

5. Find trace using waypoints. This step is simply the
iterative targeting of successive waypoints, using the
trace to the previous waypoint as the initialization
sequence. For the first waypoint, the initialization
sequence is the normal reset sequence for the design.
The detailed performance numbers for the waypoints
and error signature of our case study are shown in
section IV.

Once the error signature is found and the theory of the
error is confirmed, the next step is usually to fix the error and
validate that it has been removed from the design. In our case,
the underlying cause of the error was that the dpstall counter
was missing a stall term that would prevent it from wrapping
and was thus allowing multiple stall releases. Once fixed, the
RTL was re-checked, with each waypoint and the error
signature targeted by FV. We were able to quickly obtain
proofs that the first two waypoints were unreachable.
Although the complexity of the design prevented us from
obtaining a full proof that the error signature is unreachable,
the fact that the necessary preconditions for the error were no
longer possible gave us confidence that the fixed RTL no
longer has the error.

IV. COMPARING DIRECT AND INDIRECT FORMAL
ANALYSIS

The case study in section III highlights the difference
between model checking from a reset state versus model
checking using waypoints. The complexity of the target
property is just beyond the reach of bounded model checking,
using standard commercially available model checkers.
Applying waypoints, however, narrows the scope of analysis
sufficiently to reach the target (Table 1).

Table 1. Direct FV of Target vs. FV using Waypoints

Target Initialization
sequence

Mem. Time
(CPU sec)

Analysis depth CEX
found?

Error
Signature

Reset state 32
GB

> 260000
(3 days)

65 no

Waypoint
1

Reset state 9 GB 2135 28 yes

Waypoint
2

Waypoint 1
(28 cycles)

9 GB 32637 40
(68 from reset)

yes

Error
Signature

Waypoint 1
(28 cycles)

32
GB

> 260000
(3 days)

40
(68 from reset)

no

Error
Signature

Waypoint 2
(68 cycles)

9 GB 1250 1
(69 from reset)

yes

Table 1 shows that the error signature is only a few cycles
away from the achieved analysis depth of the FV run from
reset (as shown in row 1). What is not shown in this table is
that the analysis depth of the run from reset had been at 65 for
approximately 50% of the runtime and appeared incapable of
making further progress. It is common for bounded model
checkers to hit an analysis depth limit, beyond which it is
impractical to continue within a reasonable time.

Also compare row 4 (“Error Signature target from
Waypoint 1”) against row 5 (“Error Signature target from
Waypoint 2”). Row 5 shows that only one additional cycle of
analysis was needed from Waypoint 2 to find the error
signature; but that single cycle required a large amount of
analysis. It is easy to fall into the trap of thinking that with
only a few cycles of analysis needed to reach the next target
property, it is simply a matter of providing a small amount of
additional time or memory. One characteristic of SAT-based
model checking, however, is that the amount of CPU time and
memory required to complete each additional cycle of analysis
has little correlation to the amount of CPU time required for
any previous cycle; it is dependent only on the model and the
hardware state. Exponential explosion in time or memory
frequently occur at large analysis depths. In this case, this
single cycle of analysis pushed the target assertion out beyond
the reach of analysis from Waypoint 1.

V. SUMMARY
 This paper describes a method of finding the root cause of

an error signature, which is particularly valuable in post-
silicon debug, using model checking of multiple waypoints to
reduce the scope of formal analysis. The methodology
includes guidelines for selecting the type of model-checking
engine to use, a procedure for selecting input constraints that
utilizes known information from the error signature, and a
procedure for identifying waypoints and using them to find a
path to the error signature from a reset state of the design. The
method was illustrated with a detailed case study from the
post-silicon debugging of the Anton ASIC, providing
examples for each step of the method. Finally, performance
numbers were presented for an example in which the method

of using waypoints is able to discover a path to an error
signature that would not be found within a practically feasible
amount of time using a standard formal verification
methodology. (The error in question, which was handled
using a software workaround, was fixed in a subsequent
version of the Anton chip.)

ACKNOWLEDGMENT
 We would like to acknowledge and thank the engineers

from our formal verification tool vendors, Jasper Design
Automation and Mentor Graphics (0-In Functional
Verification), who provided invaluable support throughout our
project.

REFERENCES
[1] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J.

K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P.
Eastwood, J. Gagliardo, J.P. Grossman, C. R. Ho, D. J. Ierardi, I.
Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R.
Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles
and S. C. Wang, “Anton: A special-purpose machine for molecular
dynamics simulation,” in Proc. 34th International Symposium on
Computer Architecture (ISCA ’07), San Diego, CA, June 9–13, 2007,
pp. 1–12.

[2] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking. Cambridge:
MIT Press, 1999.

[3] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, D.
Miller, “A reconfigurable design-for-debug infrastructure for SoCs,” in
Proc. 43rd Design Automation Conference (DAC ’06), San Francisco,
CA, July 2006.

[4] S. B. Park and S. Mitra, “IFRA: Instruction footprint recording and
analysis for post-silicon bug localization in processors,” in Proc. 45th
Design Automation Conference (DAC ’08), Anaheim, CA, June 2008.

[5] J. Kumar, C. Ahlschlager, P. Isberg, “Post-silicon verification
methodology on Sun’s UltraSparc T2,” in High Level Design
Validation and Test Workshop (HLDVT ’07), Irvine, CA, Nov 7–9,
2007.

[6] M. R. Prasad, A. Biere, A. Gupta, “A survey of recent advances in
SAT-based formal verification,” in International Journal on Software
Tools for Technology Transfer (STTT), 2005.

[7] C. H. Yang and D. L. Dill, “Validation with guided search of the state
space,” in Proc. 35th Design Automation Conference (DAC ’98), San
Francisco, CA, June 1998.

[8] M. Ganai, P. Yalagandula, A. Aziz, A. Kuehlmann, and V. Singhal,
“SIVA: A system for coverage-directed state space search,” in Journal
of Electronic Testing: Theory and Applications, February 2001.

[9] P. Bjesse and J. Kukula, “Using counter example guided abstraction
refinement to find complex bugs,” in Design, Automation and Test in
Europe (DATE ’04), March 2004, pp.10156–10161.

[10] C. Wang, A. Gupta, and F. Ivancic, “Induction in CEGAR for detecting
counterexamples,” In Proc. International Conference on Formal
Methods in Computer Aided Design (FMCAD), November 2007.

[11] R. H. Larson, J. K. Salmon, R. O. Dror, M. M. Deneroff, R. C. Young,
J.P. Grossman, Y. Shan, J. L. Klepeis and D. E. Shaw, “High-
throughput pairwise point interactions in Anton, a specialized machine
for molecular dynamics simulation,” in Proc. 14th International
Symposium on High-Performance Computer Architecture (HPCA ’08),
Salt Lake City, UT, Feb. 16–20, 2008, pp. 331–342.

[12] J. S. Kuskin, C. Young, J.P. Grossman, B. Batson, M. M. Deneroff, R.
O. Dror and D. E. Shaw, “Incorporating flexibility in Anton, a
specialized machine for molecular dynamics simulation,” in Proc. 14th
International Symposium on High-Performance Computer Architecture
(HPCA ’08), Salt Lake City, UT, Feb. 16–20, 2008, pp. 343–354.

