
A common, avoidable source of error in molecular dynamics integrators

Ross A. Lippert, Kevin J. Bowers, Ron O. Dror, Michael P. Eastwood, Brent A. Gregersen,
John L. Klepeis, and Istvan Kolossvary
D. E. Shaw Research, LLC, New York, New York 10036

David E. Shawa�

D. E. Shaw Research, LLC, New York, New York 10036 and Center for Computational Biology
and Bioinformatics, Columbia University, New York, New York 10032

�Received 24 October 2006; accepted 11 December 2006; published online 29 January 2007�

�DOI: 10.1063/1.2431176�

The most popular integration methods in molecular dy-
namics �MD� simulations are the Verlet algorithm1 and its
velocity-explicit brethren, leapfrog and velocity Verlet2

�Table I�, which integrate the differential equation ẍ
=a�x�t��. In exact arithmetic, from appropriate starting con-
ditions, their approximations xi�x�i�t� are identical, with
error proportional to the square of the time step �t. In finite-
precision arithmetic, on the other hand, the velocity-explicit
algorithms are recognized as more accurate than Verlet,3 and
this is one reason why they are used by most widespread MD
codes. Many of these codes, however, add a modification
like vi+1/2= �xi+1−xi� /�t to compute a modified velocity from
a modified position when run with constraints. We show that
this modification degrades the numerical accuracy of such
integrators to that of Verlet. Once recognized, the problem
can be easily remedied.

The velocity-explicit algorithms have an advantage in
finite-precision arithmetic because storing vi+1/2 or vi, instead
of xi−1, is a better use of the available precision. In typical
simulations, xi and xi−1 usually have some k leading bits in
common, so k bits of the difference xi−xi−1 will be zero, and
thus carry no information. Demonstrations of this disadvan-
tage are easily made; the amplitude drift of a simulated har-
monic oscillator is larger using Verlet than leapfrog or veloc-
ity Verlet. Alternatively, consider a one-dimensional system
under constant acceleration a�x�=A�0 starting from �x ,v�
= �1,1� at t=0. With relative arithmetic precision � �i.e., 1
+� evaluates to 1 if ����� /2�, the acceleration affects the
trajectory under Verlet only if A��t

−2� /2. For the velocity-
explicit algorithms, values of A above �t

−1� /2 �leapfrog� or
�t

−1� �velocity Verlet� affect the trajectory. This suggests that
velocity-explicit algorithms are more sensitive to accelera-
tion and this difference is more pronounced in lower preci-
sion arithmetic.

By mediating the flow of information from acceleration,
a�xi�, to position, xi, the velocity data accumulate values too
small to have an immediate effect on xi, but which may have
a cumulative effect later. Any inversion of this relationship is
justly viewed with suspicion.

For illustration, consider a modified leapfrog,

ṽi+1/2 = vi−1/2 + �ta�xi� , �1�

xi+1 = xi + �tṽi+1/2, �2�

vi+1/2 =
xi+1 − xi

�t
. �3�

Substituting Eqs. �3� and �1� into Eq. �2� gives a numerically
equivalent iteration step for x,

xi+1 = xi + �t� xi − xi−1

�t
+ �ta�xi�� . �4�

In the constant acceleration example, A��t
−2� /2 has no ef-

fect, as for Verlet. Moreover, in standard floating point, if
�t=2k for some integer k then Eq. �4� is numerically equiva-
lent to

xi+1 = xi + ��xi − xi−1� + �t
2a�xi�� ,

highlighting its similarity to Verlet.16 Using the equation
xi+1=xi+�tvi+1/2 to find vi+1/2 removes v from its place in the
information flow. Although Eq. �3� is a gratuitous addition,
recomputation of velocity from successive positions is a
tempting expedient when integrating in the presence of po-
sition constraints.

Constraints can be incorporated into the Verlet algorithm
with the update rule

xi+1 = ��2xi − xi−1� + �t
2a�xi�� + �t

2A�xi��i, �5�

where A�xi� is a matrix whose columns are normal to the
constraint surface at xi and the Lagrange multiplier �i is a
vector determined by demanding that constraints be satisfied
at xi+1. SHAKE �Ref. 4� is an iterative method that determines
a corrected xi+1 from an uncorrected x̃i+1= �2xi−xi−1�
+�t

2a�xi�, avoiding explicit calculation of �i. M-SHAKE �Ref.
5� is a different iterative solver. SETTLE �Ref. 6� is a closed-
form x̃i+1→xi+1 correction suitable for rigid water molecules.

A common adaptation of SHAKE to leapfrog replaces Eq.
�2� with

x̃i+1 = xi + �tṽi+1/2, �2��

xi+1 = SHAKE�x̃i+1� , �2��

reducing to Eqs. �1�–�3� in the absence of constraints. The
LINCS algorithm7 also uses Eq. �3� for velocity correction
�their Eq. �12��, though it is easily repaired �Eq. �15��.

THE JOURNAL OF CHEMICAL PHYSICS 126, 046101 �2007�

0021-9606/2007/126�4�/046101/2/$23.00 © 2007 American Institute of Physics126, 046101-1

Downloaded 03 Apr 2009 to 149.77.27.73. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2431176
http://dx.doi.org/10.1063/1.2431176

One could avoid Eq. �3� by an alternative discretization,
algebraically equivalent to Eq. �5�,

vi+1/2 = vi−1/2 + �ta�xi� + �tA�xi��i, �6�

xi+1 = xi + �tvi+1/2, �7�

where �i is determined so that constraints are satisfied at xi+1.
RATTLE �Ref. 8� uses the velocity Verlet version of this dis-
cretization with an additional velocity correction to ensure
tangency to the constraint surface �vi ·A�xi�=0�. A textbook3

supplementary FORTRAN program F.9 demonstrates an itera-
tive RATTLE method similar to SHAKE.

Two of the most widely used MD codes, AMBER �Ref. 9�
�Version 9, sander and pmemd� and GROMACS �Ref. 10� �Ver-
sion 3.3.1�, use Eq. �3� whenever constraints are active. An-
other code, NAMD �Ref. 11� �Version 2.6�, incorporates F.9,
but the default constraint method uses SETTLE with Eq. �3�
for water atoms. Another popular MD code, CHARMM �Ref.
12� �Version 33�, uses a more accurate alternative to Eq. �3�,

vi+1/2 = ṽi+1/2 +
xi+1 − x̃i+1

�t
, �3��

which infers the contact acceleration, �xi+1− x̃i+1� /�t
2, rather

than the velocity, from the corrected positions. This solution
is not as accurate as methods based on the RATTLE discreti-
zation; the acceleration can be computed more accurately by
directly solving for the �i in Eq. �6�. MD codes have tradi-
tionally run in double precision, where the degradation from
Eq. �3� is insignificant, but it may become problematic if
other codes follow the lead of GROMACS in using single-
precision arithmetic to accelerate MD computations.

To assess the impact of Eq. �3�� on a single-precision
simulation, we incorporated Eq. �3�� into GROMACS �a sim-
pler code modification than RATTLE�. Starting from an equili-
brated 30 Å3 cube of water �901 molecules, periodic�, we ran
an NVE simulation for 1 ns with �t=1 fs, using single-
precision GROMACS, our modified version, and correspond-
ing double-precision versions. We selected SETTLE for com-
putation of constrained positions to avoid considerations of

iterative methods and parameters. Figure 1 shows that even
this partial fix substantially reduces energy drift in single
precision. We also plot the same results for single-precision
Desmond,13 which uses the RATTLE discretization with a
variant of M-SHAKE. Other differences between Desmond and
GROMACS may also contribute to differences in results.

a�Author to whom correspondence should be addressed. Electronic mail:
david@deshaw.com
1 L. Verlet, Part. Part. Syst. Charact. 159, 98 �1967�.
2 W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem.
Phys. 76, 637 �1982�.

3 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids �Oxford
University Press, Oxford, 1987�.

4 J. -P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Chem.
23, 327 �1977�.

5 V. Kräutler, W. F. van Gunsteren, and P. H. Hünenberger, J. Comput.
Chem. 22, 501 �2001�.

6 S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 �1992�.
7 B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J.
Comput. Chem. 18, 1463 �1997�.

8 H. C. Andersen, J. Comput. Phys. 52, 24 �1983�.
9 D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. Merz, A.
Onufriev, C. Simmerling, B. Wang, and R. Woods, J. Comput. Chem. 26,
1668 �2005�.

10 D. van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H.
J. C. Berendsen, J. Comput. Chem. 26, 1701 �2005�.

11 J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 26,
1781 �2005�.

12 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-
nathan, and M. Karplus, J. Comput. Chem. 4, 187 �1983�.

13 K. J. Bowers, E. Chow, H. Xu et al., in Proceedings of the 2006 ACM/
IEEE Conference on Supercomputing �SC06�, Tampa, Florida �2006�.

14 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Her-
mans, in In Intermolecular Forces, edited by B. Pullman �Reidel, Dor-
drecht, 1981�, pp. 331–342.

15 U. Essman, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.
Pedersen, J. Chem. Phys. 103, 8577 �1995�.

16 The result is similar if �t is not such a power, with extra roundoff terms
from the arithmetic.

TABLE I. Common integration methods: parentheses indicate the custom-
ary computational ordering �Ref. 3�.

Verlet xi+1= �2xi−xi−1�+�t
2a�xi�

Leapfrog vi+1/2=vi−1/2+�ta�xi�
xi+1=xi+�tvi+1/2

Velocity Verlet xi+1=xi+�t�vi+
1
2�ta�xi��

vi+1= �vi+
1
2�ta�xi��+ 1

2�ta�xi+1�

FIG. 1. Energy drift for our test simulations using SPC water �Ref. 14�,
smooth particle mesh Ewald �Ref. 15� with fourth order B splines, 1 /�
=2.96 Å, a 1 Å mesh spacing, 10 Å van der Waals and 12 Å Coulomb
cutoffs, and neighbor list updates every time step ��t=1 fs�.

046101-2 Lippert et al. J. Chem. Phys. 126, 046101 �2007�

Downloaded 03 Apr 2009 to 149.77.27.73. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

