
Simulation and Embedded Software Development for Anton,
a Parallel Machine with Heterogeneous Multicore ASICs

J.P. Grossman, Cliff Young, Joseph A. Bank1, Kenneth Mackenzie1,
Douglas J. Ierardi, John K. Salmon, Ron O. Dror, David E. Shaw2

D. E. Shaw Research, New York, NY 10036, USA

ABSTRACT
Anton, a special-purpose parallel machine currently under con-
struction, is the result of a significant hardware-software codesign
effort that relied heavily on an architectural simulator. One of
this simulator’s many important roles is to support the develop-
ment of embedded software (software that runs on Anton’s
ASICs), which is challenging for several reasons. First, the Anton
ASIC is a heterogeneous multicore system-on-a-chip, with three
types of embedded cores tightly coupled to special-purpose hard-
ware units. Second, a standard 512-ASIC configuration contains
a total of 6,656 distinct embedded cores, all of which must be
explicitly modeled within the simulator. Third, a portion of the
embedded software is dynamically generated at simulation time.

This paper discusses the various ways in which the Anton simula-
tor addresses these challenges. We use a hardware abstraction
layer that allows embedded software source code to be compiled
without modification for either the simulation host or the hard-
ware target. We report on the effectiveness of embedding golden-
model testbenches within the simulator to verify embedded soft-
ware as it runs. We also describe our hardware-software co-
simulation strategy for dynamically generated embedded soft-
ware. Finally, we use a methodology that we refer to as concur-
rent mixed-level simulation to model embedded cores within mas-
sively parallel systems. These techniques allow the Anton simu-
lator to serve as an efficient platform for embedded software de-
velopment.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies

General Terms
Performance, Design, Languages

Keywords
Anton, Simulation, Embedded Software, Special-Purpose Hardware

1 Joseph A. Bank and Kenneth Mackenzie are also with Reservoir
Labs, Inc., New York, NY 10012.

2 David E. Shaw is also with the Center for Computational Biology
and Bioinformatics, Columbia University, New York, NY 10032.
E-mail correspondence: David.Shaw@DEShawResearch.com

1. INTRODUCTION
Anton is a special-purpose parallel machine, currently under con-
struction, that is expected to dramatically accelerate molecular
dynamics (MD) computations relative to other parallel solutions
[13]. The standard Anton configuration will consist of 512 iden-
tical ASICs connected by high-speed links to form a three-
dimensional torus. Each ASIC contains two computational sub-
systems: a high-throughput interaction subsystem (HTIS) [8], in
which specialized datapaths compute pairwise interactions be-
tween particles, and a flexible subsystem [7], in which program-
mable embedded processors are used to perform other numerical
tasks and to control the overall computation. In total, each ASIC
contains 13 embedded processors: an interaction control block
(ICB) core used to control the HTIS, four general-purpose (GP)
cores used to control the flexible subsystem and drive the overall
MD algorithm, and eight geometry cores (GCs) which perform
the bulk of the numerical computation within the flexible subsys-
tem. The GP and ICB cores are specialized versions of the Ten-
silica LX customizable processor [15], while the GCs were devel-
oped specifically for Anton.

Anton’s hardware-software codesign effort made extensive use of
an architectural simulator to simultaneously evaluate multiple
algorithms, hardware accelerators, and software implementations.
Initially, this simulator was used for high-level architectural ex-
ploration, with the flexible subsystem tasks implemented behav-
iorally. As the design evolved, functionality was partitioned be-
tween hardware blocks and embedded software, and the simulator
became a platform for architectural validation, detailed perform-
ance estimates, performance/area trade-offs, and embedded soft-
ware development. In addition, enough detail was added to the
simulator to support hardware design verification and the devel-
opment of system-level control/debug software that runs exter-
nally to the ASICs. To our knowledge, this diversity of roles for
a single simulator code base is extremely rare in a hardware pro-
ject of this scope. In this paper, we focus on the mechanisms used
to support hardware-software co-simulation and embedded soft-
ware development within the Anton simulator.

The nature of Anton’s embedded software does not lend itself to
conventional simulation techniques. The code for the GP cores,
which emerged directly from Anton’s hardware-software
codesign effort, rapidly evolved along with the hardware design,
and required strong debugging support from the simulator. There
is no compiler for the GCs, so the numerical code exists in two
forms: C++ code that runs within a functional GC model, and
manually generated assembly code that runs on the GC Instruc-
tion Set Simulator (ISS). The ICB code, which delivers a se-
quence of control instructions to the HTIS, does not even exist at
compile time: rather, it is dynamically generated based on the
specific molecular system being modeled.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10...$5.00.

125

Architectural simulations of Anton also differ from traditional
embedded processor simulations in both duration and size. A
single MD time step (the unit of discretization for an MD compu-
tation) takes a few microseconds on Anton or, equivalently, a few
thousand clock cycles. While Anton is intended to run calcula-
tions for hundreds of billions of such time steps (over a quadril-
lion clock cycles), it generally suffices to simulate fewer than ten
time steps for performance modeling and software debugging
purposes. On the other hand, simulating a 512-node Anton ma-
chine requires significant resources, as such a machine contains a
total of 6,656 distinct embedded cores. Thus, architectural simu-
lations of Anton are short (few cycles) but large (many cores,
hardware units, and memories) compared to most embedded-
processor simulations.

The following sections present our simulation methodologies for
Anton’s embedded cores; the techniques that we describe address
our unique simulation needs and provide an efficient platform for
embedded software development. For the GP cores, we show
how the use of a hardware abstraction layer allows the full GP
embedded software to be compiled without modification for the
simulation host processor and linked to the simulator executable.
For the GCs, we borrow from hardware design verification by
using golden models within the simulator. For the ICB cores, we
generate a high-level command sequence that can either be di-
rectly interpreted or used to produce compilable source code.
Finally, we use a methodology, which we refer to as concurrent
mixed-level simulation, to accelerate ISS-level simulations of
massively parallel systems by restricting the use of detailed ISS
models to a single simulated node; this technique allows us to
efficiently meet our verification and performance estimation re-
quirements.

2. MODELING THE GP CORES USING A
HARDWARE ABSTRACTION LAYER
Initial versions of the embedded software were written in C++
and directly linked to the simulator executable. Once we selected
an implementation for the GP cores, specifically Tensilica LX
processors with customized extensions, it was necessary to adapt
the embedded software to the Tensilica processor and modify the
simulator to support embedded software development for this

platform. The Tensilica processors come with an interpreter-
based, cycle-accurate ISS and a mature optimizing C compiler.
However, we were concerned about both the speed and memory
footprint of the interpreted ISS, especially given that a full-
machine simulation would involve 2,048 GP cores.

A variety of clever techniques for accelerating the simulation of
embedded processors already exist and offer various trade-offs
among speed, accuracy and flexibility (Figure 1). Direct execu-
tion [12] runs portions of the application software on the simula-
tion host processor rather than on an ISS for the target architec-
ture; this requires the host and target architectures to be the same.
When the host and target architectures differ, two methods can be
used to accelerate the interpretation of target binaries: compiled
simulation [1, 11, 17, 20, 21] uncompiles target binaries to a high-
level language (usually C or C++) which is then recompiled for
the host architecture; dynamic translation [9, 10, 18] translates
target machine instructions into one or more host machine instruc-
tions at simulation time. If the embedded software source code is
available, it is possible to adopt the recently proposed virtual
coprocessor [3] approach in which the source code is automati-
cally instrumented and then compiled for the host architecture.
This instrumentation allows the simulation to dynamically switch
between the target ISS and the native host binary at function-call
boundaries, giving the effect of fast “coprocessor” function calls
from the slower ISS.

Although these techniques provide enormous speedups over an
interpreted ISS and are extremely flexible in the types of embed-
ded software that they support, they require different workflows
for the hardware simulator and the embedded software, which in
our case was undesirable. To best support Anton’s hardware-
software codesign effort, we required a uniform development and
debugging environment for both the hardware simulation and the
embedded software. We therefore introduced a hardware abstrac-
tion layer (HAL) that allows the unmodified GP embedded soft-
ware to be compiled in its entirety for either the host or target
processors. Two corresponding GP core models exist within the
simulator: a high-level model that runs the embedded software as
a native binary, and a low-level model that runs the embedded
software as a target binary on the Tensilica ISS. This method
provides the required uniform development environment as well
as extremely fast execution of the embedded software.

dynamic
translation

host compiler

target
compiler

uncompile

embedded
software

source code

C/C++

target
binary

host binary for
target instructions

or basic blocks

direct
execution

compiled
simulation

host binary for
target basic blocks

instrumented
source code

host binary
(functions)

host compiler

instrumentation

virtual
coprocessor

hardware
abstraction layer

host compiler

host binary
(static library)

link with
simulator

Figure 1. Overview of techniques for accelerating embedded processor simulations. The embedded processor
is the target; the processor that runs the simulation is the host.

126

The use of a HAL requires defining a hardware-level API with
two architecture-specific implementations: a host implementation
that runs within the simulator itself, and a target implementation
that runs on the target ISS and reads/writes the target processor
interface signals modeled by the ISS. All of the hardware func-
tionality available to application programs must be encapsulated
within this API, and all embedded software must use the API
instead of directly accessing hardware features. This restriction
makes the use of a HAL unsuitable for simulation platforms that
need to support externally supplied or pre-existing software,
unless the cost of refactoring the software to use the API is suffi-
ciently low. In our case, all embedded software was internally
developed during the course of the project, so this was not an
issue.

2.1 Hardware API
The Anton simulator uses an internally developed cycle-based
C++ simulation infrastructure that supports hardware interfaces
with ports and connections. We defined a single hardware inter-
face shared by both the high-level (native binary linked with
simulator) and low-level (target binary running on ISS) GP core
models, so that the choice of model is transparent to the rest of the
simulation. The interface consists of several hardware queues,
which are used for direct communication between the GP cores,
and load/store access to a remote access unit (RAU), which per-
forms autonomous data transfers. The hardware API used by the
embedded software contains functions for accessing the queues
and managing the RAU.

In the high-level GP core model, the embedded software runs
natively within a QuickThread [5]—a user-level thread that must
be manually scheduled by the simulator, and that must explicitly
relinquish control (“yield”) to suspend its execution and allow the
simulator to resume. There is no inherent measure of time in
these threads; instead, annotations are added to the embedded
software by programmers to model the passage of time. These
annotations simply increment the local time and do not otherwise
interfere with execution, so the threads are allowed to “run ahead”
of the global simulation time. The high-level implementation of
each hardware API function first synchronizes to the global simu-
lation time by yielding, if necessary, until the rest of the simula-
tion has caught up. Once the local and global times have been
synchronized, the API function can safely execute by read-
ing/writing the appropriate hardware interface ports.

The low-level GP core model uses Tensilica’s XTMP cycle-
accurate ISS [16], which advances in lockstep with the main cy-
cle-driven simulation. The hardware API is implemented in C;
the queue access functions (push, pop, peek) delegate to corre-
sponding processor instructions, while the RAU management
functions perform reads and writes to a memory-mapped RAU
interface. When an API function reads or writes a processor inter-
face signal, the XTMP library invokes a callback function within
the simulator that forwards the read/write to the appropriate
port(s) of the hardware interface (Figure 2).

2.2 Memory Visibility
Each GP core in the flexible subsystem has a private data cache,
and is connected to an SRAM that is shared with the RAU and
two of the GCs. For both GP core models, we needed to preserve
two types of visibility into these memories. First, data visibility

was required for various global validation functions. At certain
points in the MD time step, these functions check the consistency
of data structures across the machine using “simulator magic”, i.e.
by directly accessing deeply buried implementation state. These
consistency checks were critical for debugging the embedded
software, and required visibility into the contents of both the data
cache and the shared SRAM. Second, access visibility was re-
quired for accurate performance modeling. SRAM bandwidth
and contention were important factors contributing to perform-
ance, so the simulator needed to be able to detect SRAM accesses
to properly account for these effects.

Data visibility was fairly straightforward to implement. The
shared SRAM was modeled independently and was always avail-
able for inspection. In the low-level GP core model, the data
cache is, by default, not visible because it is part of the ISS, but
we restored visibility by setting the cache mode to write-through.
We used the same in-memory data structure (defined by a C
struct) to hold the contents of the cache for both the high-level
and low-level GP core models: in the high-level model the em-
bedded software modified this structure directly, while in the low-
level model this structure was a copy of the contents of the ISS
cache, and was kept up-to-date by the XTMP write-through call-
back handler. A small (but important) note is that some care was
required in aligning the contents of this data structure to ensure
that both the host compiler (gcc) and the Tensilica compiler (xt-
xcc) would produce exactly the same data layouts.

Obtaining visibility to SRAM accesses required slightly more
engineering. This visibility was already present in the low-level
model because XTMP uses callbacks to access SRAM, but in the
natural high-level implementation, the embedded software would
directly read and write the SRAM data structure elements, so
there would be no way for the simulator to monitor these ac-
cesses. Our solution was to wrap every reference to SRAM
within a macro. In the target builds (which run on the ISS), this
macro expands to a direct data access. In the host builds (which
are linked to the simulator), the macro expansion also includes a
notification callback, which allows the simulator to properly

High-level GP core model

QuickThread

Low-level GP core model

Tensilica ISS

XTMP callbacks

RAU

Figure 2. The high-level and low-level GP core models share
a common GP core hardware interface. The interface is ac-
cessed directly by the high-level hardware API, and indirectly
by the low-level hardware API via XTMP callbacks.

host binary
(static library)

hardware API

GP core hardware interface

target binary

hardware API

127

model SRAM contention between the GP cores and the other
hardware components.

2.3 Instrumentation
One of the advantages of a HAL-based methodology is that it
makes it easy to add various instrumentation to the code (asser-
tions, validation, printfs, etc.) by using macros that are only im-
plemented in the host builds. This approach is not possible with
simulation techniques that use target binaries as an intermediate
representation, although we note that the virtual coprocessor tech-
nique not only supports instrumentation, but can in some cases
add it to the code automatically.

The instrumentation functions use simulator magic to perform
their duties and cannot be implemented in the production binaries
that run on the Anton ASIC. It was, however, desirable to pre-
serve their functionality in the ISS-level simulations. We accom-
plished this by defining three versions of the instrumentation mac-
ros depending on preprocessor definitions: in the host builds, the
macros become function calls; in production target builds in-
tended for the Anton ASIC, they are simply removed; and in tar-
get builds intended for ISS simulation, they are implemented as
writes to an otherwise-unused portion of data memory. For these
“instrumentation writes”, the memory address specifies the in-
strumentation function to invoke, and the 128-bit write data con-
tains up to four arguments. The XTMP callback that handles data
memory writes then invokes the appropriate instrumentation func-
tion with the supplied arguments.

3. VERIFYING GC CODE WITH
EMBEDDED GOLDEN MODELS
We did not have a compiler for the GCs, which placed us in the
unenviable position of having to write two versions of the nu-
merical code: a high-level version, written in C++, which could
be linked to the simulator executable; and a low-level version,
written in assembly, which would run on the ISS. In our software
development workflow, the high-level code has always been writ-
ten and tested first for two reasons. First, it is much easier and
faster to work with natively-compiled C++ than emulated assem-
bly. Second, C++ versions of the numerical computations are
required by the sequential validator—a single-threaded imple-
mentation of the MD algorithm used to verify (bitwise) the com-
putation performed on the simulated parallel machine. Once the
high-level GC code has been implemented and tested, the identi-
cal computation is then hand-coded in assembly.

We considered a variety of approaches for working within a sin-
gle code base, either by programming entirely at the assembly
level and using compiled simulation techniques to address simula-
tion speed, or by using a stylized subset of C that could be auto-
matically converted to efficient assembly language without the
need for a full-featured compiler. None of these approaches,
however, would have provided us with both the ease of coding
and sequential validator support that we desired for initial devel-
opment, and the highly optimized assembly code that we required
for production binaries.

Because we were unable to eliminate the dual implementations of
the GC code, we strove instead to leverage these multiple imple-
mentations to our advantage. We did so by making use of the
standard golden model methodology for block-level hardware

design-verification testbenches. In this methodology, the device
under test (DUT) is simulated side-by-side with a golden model—
a behavioral implementation of the block that conforms to the
hardware specification. The DUT and the golden model are pre-
sented with identical stimuli, and the testbench compares their
outputs. In the Anton simulator, each GC ISS (which acts as the
DUT) is instantiated alongside a high-level GC (which acts as the
golden model) within an “embedded testbench”. The simulator
supplies the same inputs to each model, and verifies that the out-
puts are identical. In this manner, we obtain substantial verifica-
tion of the GC assembly code by ensuring that its results exactly
match those produced by the reference C++ implementation.

This technique proved to be extremely effective for isolating bugs
in the numerical code. Although these bugs would eventually
manifest as miscomparisons between the outputs of the ISS-level
Anton simulator and the sequential validator, such miscompari-
sons are difficult to diagnose because the source of the problem
could be in any portion of the MD computation. Using golden
model verification for the GCs localized these bugs both in origin
(which GC was the source of the error) and in time (at which
point of the MD computation the error occurred), enormously
simplifying the debugging task.

3.1 Transaction-Level Verification
The high-level GC models, like the high-level models of the GP
cores, execute natively within QuickThreads and have no intrinsic
notion of time. The code is manually annotated with the amount
of time that various computations take, based on performance
numbers obtained from the low-level (ISS) simulations. The re-
sulting timing of the high-level model is an approximation only;
in particular, it is not possible to compare the outputs of the high-
and low-level GC models on a cycle-by-cycle basis. Instead,
golden model verification is performed at the transaction level,
which is made significantly easier by the fact that the GC hard-
ware interface is entirely queue-based. Input data is copied into
two corresponding queues, one for each GC model. Output data
from the two models is merged: when data is available on the
corresponding output queues in both models, it is compared bit-
wise before being forwarded to the rest of the simulation. This
functionality is encapsulated within a C++ class that contains both
GC models and has the same hardware interface as a single GC,
so that the instantiation of a verification testbench in place of a
GC is transparent to the rest of the simulation (Figure 3).

Figure 3. The embedded GC testbench has the same hard-
ware interface as a single GC, but contains both high-level
and low-level GC models. Input data is copied to both mod-
els. Output data is synchronized and compared before being
forwarded to the rest of the simulation.

Embedded GC testbench

high-level
GC (C++)

low-level
GC (ISS)

=

=

128

4. SIMULATING THE ICB USING
COMMAND SEQUENCE INTERPRETATION
The ICB core in the HTIS is responsible for coordinating the
movement of data from a set of memory buffers to an array of
hardware datapaths that compute pairwise particle interactions. It
does so by pushing a sequence of buffer allocation, data move-
ment and synchronization commands onto a queue; the commands
are then executed by the HTIS hardware. This command-queue
interface provides a convenient abstraction layer for the ICB em-
bedded software: within the simulator, an ICB model emits a
sequence of commands that are directly interpreted by the HTIS
hardware model. The specific sequence of commands required to
orchestrate the HTIS computation, however, depends on both the
size of the molecular system being modeled and the parameters of
the MD computation, and as such is not known at compile time.
Instead, these command sequences are dynamically generated by
the simulator executable as a preparation step; the high-level ICB
model simply stores the generated commands and pushes them
onto the command queue.

Once the Tensilica ICB core was specified, including specialized
processor instructions used to push commands onto the queue,
actual binaries were required for the detailed ISS simulations. A
generic binary would have been too large to fit in the ICB core’s
limited instruction memory; it was therefore necessary to dynami-
cally generate binaries specialized to the molecular system being
modeled and the parameters of the MD computation. This was
accomplished by expanding the preparation step to automatically
generate compilable C code from the internal representation of the
command sequence. Each command is emitted as a single macro
or processor instruction; a fixed header file provides definitions
for all required macros, constants, and inline functions. The Ten-
silica compiler is invoked from within the simulator executable to
generate the ICB binary, which is then interpreted by the Ten-
silica ISS during the simulation (Figure 4).

5. CONCURRENT MIXED-LEVEL
SIMULATION
High-level processor models are much faster than ISS-level mod-
els, and are therefore generally preferred for embedded software
development. It is, however, still necessary to test the embedded
software on ISS-level models, as this is the only way to ensure the
correctness of the target executable. One of the problems we
encountered with the GP code, for example, was related to an
unanticipated reordering of memory accesses by Tensilica’s opti-
mizing compiler. The ISS models are also important for verifying
the interaction between the processors and the rest of the system;
several problems with the ICB core were discovered when the
ISS-level ICB model failed to exactly reproduce the original se-
quence of HTIS commands. A second function of ISS-level simu-
lations is to provide more accurate performance estimates, par-
ticularly when timing annotations in the embedded software are
missing or outdated.

One of the simplest and most commonly used techniques to ad-
dress the slow speed of ISS-level simulation is “fast-forwarding”,
which uses fast high-level models to initialize the simulation, then
switches to slower detailed models to obtain performance esti-
mates for targeted regions of code [14, 19]. This approach is
effective for conventional simulations in which the run time for

the software of interest is much shorter than the processor initiali-
zation time, but for Anton the reverse is true—the majority of
time is spent performing the computations for which we desire
ISS-level validation and performance estimates.

ISS-level simulations of Anton are also challenging due to the
large number of embedded processors in a 512-node machine. In
fact, the XTMP ISS supplied by Tensilica for the GP and ICB
cores does not even support simulations of this scale: it is only
available as a 32-bit library, requiring the simulator to fit within a
4 GB virtual address space, but XTMP is fairly inefficient in its
use of memory and would require in excess of 20 GB to simulate
the requisite 2560 Tensilica cores. In principle, one could address
this limitation by parallelizing the simulation itself, but we instead
used an alternate methodology that altogether eliminates the need
for full-machine ISS simulations.

A key observation is that all 512 nodes in a full machine run the
same embedded software, so from a verification perspective it
suffices to use ISS models for a single node only. We adopted
this approach, which we refer to as concurrent mixed-level simu-
lation (CMLS) to distinguish it from mixed-level simulations that
sequentially alternate between high- and low-level processor
models. Because the use of detailed models is restricted to a sin-
gle node, the overall impact on memory usage and execution time
is significantly reduced from a full-machine ISS-level simulation.
Mixed-level simulations have been applied to single-chip multi-
processor designs with different processors modeled using differ-
ent levels of detail [4]. CMLS, in the context of a parallel ma-
chine, has the advantage that a full ASIC is modeled in detail, so a
single simulation tests all embedded software at the ISS level, and
also tests all pairs of interactions between ISS-level processor
models.

On its own, CMLS does not give very good performance esti-
mates, so we used a standard annotation approach to obtain more
accurate performance data. The first step is to run a simulation
with one ISS-level node; the execution traces from this node are
used to annotate the embedded software with appropriate delays.
High-level simulations can then be run with the annotated soft-

molecular system HTIS commands

generated
source code ICB binary

Tensilica
compiler

ISS

hi
gh

-le
ve

l I
C

B

preparation simulation

command queue

IS
S

-le
ve

l I
C

B

Figure 4. The high-level ICB model pushes a list of gener-
ated HTIS commands directly onto the command queue.
For the ISS-level ICB model, the command sequence is used
to generate and compile source code which is executed on the
ICB core ISS; the ISS regenerates the original commands
and places them on the command queue.

129

ware to obtain performance estimates. Table 1 shows the results
of this methodology for a 64-node Anton configuration (sized so
that a full-ISS simulation would fit in memory). Before annota-
tion, the high-level simulation overestimates performance by 55%
compared to the full-ISS simulation. The CMLS is more accu-
rate, but still overestimates performance by 31%. When data
from the CMLS run is used to annotate the embedded software,
the annotated high-level simulation is accurate to within 15%, but
runs nearly seven times faster than the full-ISS simulation. We
note that while a manual annotation process was sufficient for our
purposes, one can also automatically obtain timing annotations
from a static analysis of the target executable [2, 6].

Table 1. Anton performance estimates obtained from four
different types of simulation of a 64-node configuration.

Type of Simulation Predicted Performance
(μs per MD time step)

Error

Full ISS 44.7 baseline
High-level (unannotated) 19.9 55%
CMLS 31.0 31%
High-level (annotated) 38.0 15%

6. CONCLUSION
Simulation was central to the hardware-software codesign process
that gave rise to the Anton architecture. This architecture, which
will allow Anton to achieve dramatic speedups over general-
purpose approaches to MD, originally existed as pure software
within early versions of the Anton simulator. As the architecture
was refined, a single code base was partitioned into a hardware
simulation tightly coupled to embedded software. The techniques
described in this paper—using a hardware abstraction layer,
golden model comparison of high- and low-level GC code, com-
mand sequence interpretation, and concurrent mixed-level simula-
tion—allowed the continued use of the Anton simulator as an
effective platform for embedded software development. The high
fidelity and strong debugging support afforded by these tech-
niques were essential for the pre-silicon development of fully-
functional embedded software. As a testament to the success of
the simulator in this regard, when the first Anton chips were de-
livered at the start of 2008, the embedded software—developed
entirely within simulation—was ported to the actual hardware in a
matter of days with only minor modifications.

7. References
[1] M. Burtscher and I. Ganusov. Automatic synthesis of high-speed proc-

essor simulators. 37th International Symposium on Microarchitecture
(MICRO-37), Portland, Oregon, Dec. 4–8, 2004, 55–66.

[2] S. Dwarkadas, J. R. Jump and J. B. Sinclair. Execution-driven simula-
tion of multiprocessors: address and timing analysis. ACM Trans. on
Modeling and Computer Simulation, 4(4), Oct. 1994, 314–338.

[3] L. Gao, S. Kraemer, R. Leupers, G. Ascheid and H. Meyr. A fast and
generic hybrid simulation approach using C virtual machine. Interna-
tional Conference on Compilers, Architectures, and Synthesis for Em-
bedded Systems (CASES ’07), Salzburg, Austria, Oct. 2007, 3–12.

[4] P. Gerin, S. Yoo, G. Nicolescu and A. A. Jerraya. Scalable and flexible
cosimulation of SoC designs with heterogeneous multi-processor target
architectures. 2001 Asia and South Pacific Design Automation Confer-
ence (ASP-DAC ’01), Yokohama, Japan, Jan. 30–Feb. 2, 2001, 63–68.

[5] D. Keppel. Tools and techniques for building fast portable threads
packages. Technical Report UWCSE 93-05-06. University of Wash-
ington Dept. of Computer Science and Engineering, 1993.

[6] S. Kraemer, L. Gao, J. Weinstock, R. Leupers, G. Ascheid and H.
Meyr. HySim: a fast simulation framework for embedded software de-
velopment. International Conference on Hardware-Software Codesign
and System Synthesis (CODES+ISSS ’07), Salzburg, Austria, Sept. 30–
Oct. 5, 2007, 75–80.

[7] J. S. Kuskin, C. Young, J.P. Grossman, B. Batson, M. Deneroff, R. O.
Dror and D. E. Shaw. Incorporating flexibility in Anton, a specialized
machine for molecular dynamics simulation. 14th International Sympo-
sium on High-Performance Computer Architecture (HPCA-14), Salt
Lake City, UT, Feb. 16–20, 2008, 343–354.

[8] R. H. Larson, J. K. Salmon, R. O. Dror, M. Deneroff, R. C. Young, J.P.
Grossman, Y. Shan, J. L. Klepeis and D. E. Shaw. High-throughput
pairwise point interactions in Anton, a specialized machine for molecu-
lar dynamics simulation. 14th International Symposium on High-
Performance Computer Architecture (HPCA-14), Salt Lake City, UT,
Feb. 16–20, 2008, 331–342.

[9] W. S. Mong and J. Zhu. DynamoSim: a trace-based dynamically com-
piled instruction set simulator. 2004 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD ’04), Washington, D.C.,
Nov. 7–11, 2004, 131–136.

[10] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr and A. Hoff-
man. A Universal technique for fast and flexible instruction-set archi-
tecture simulation. 39th Conference on Design Automation (DAC ’04),
New Orleans, LA, June 10–14, 2002, 22–27.

[11] M. Reshadi, P. Mishra and N. Dutt. Instruction set compiled simula-
tion: a technique for fast and flexible set simulation. 40th Conference
on Design Automation (DAC ’03), Anaheim, CA, June 2–6, 2003, 758–
763.

[12] M. Rosenblum, S. A. Herrod, E. Witchel and A. Gupta. Complete
computer system simulation: the SimOS approach. IEEE Parallel &
Distributed Technology: Systems & Applications, 3(4), Winter 1995,
34–43.

[13] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J.
K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. East-
wood, J. Gagliardo, J.P. Grossman, C. R. Ho, D. J. Ierardi, I. Koloss-
váry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Muel-
ler, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles and S.
C. Wang. Anton: a special-purpose machine for molecular dynamics
simulation. 34th International Symposium on Computer Architecture
(ISCA ’07), San Diego, CA, June 9–13, 2007, 1–12.

[14] P. K. Szwed, D. Marques, R. M. Buels, S. A. McKee and M. Schulz.
SimSnap: fast-forwarding via native execution and application-level
checkpointing. Eighth Annual Workshop on Interaction between Com-
pilers and Computer Architectures (INTERACT '04), Madrid, Spain,
Feb. 15, 2004, 65–74.

[15] Tensilica, Inc. http://www.tensilica.com.
[16] Tensilica, Inc. Xtensa XTMP.

http://www.tensilica.com/products/sw_xtmp_xtsc.htm
[17] J. E. Veenstra and R. Fowler. MINT: a front end for efficient simula-

tions of shared-memory multiprocessors. Second International Work-
shop on Modeling, Analysis, and Simulation on Computer and Tele-
communication Systems (MASCOTS ’94), Durham, NC, Jan. 31–Feb.
2, 1994, 201–207.

[18] E. Witchel and E. Rosenblum. Embra: fast and flexible machine simu-
lation. ACM SIGMETRICS ’96: Conference on Measurement and
Modeling of Computer Systems, Philadelphia, PA, May 23–26, 1996,
68–79.

[19] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C. Hoe. SMARTS:
accelerating microarchitecture simulation via rigorous statistical sam-
pling. 30th International Symposium on Computer Architecture (ISCA
’03), San Diego, CA, June 2003, 84–95.

[20] J. Zhu and D. D. Gajski. A Retargetable, ultra-fast instruction set simu-
lator. Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE ’99), Munich, Germany, March 9–12, 1999, 298–302.

[21] V. Živojnović, S. Tjiang and J. Meyr. Compiled simulation of pro-
grammable DSP architectures. 1995 IEEE Workshop on VLSI Signal
Processing, Sakai, Japan, 1995, 27–35.

130

