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ABSTRACT 
Anton, a special-purpose parallel machine currently under con-
struction, is the result of a significant hardware-software codesign 
effort that relied heavily on an architectural simulator.  One of 
this simulator’s many important roles is to support the develop-
ment of embedded software (software that runs on Anton’s 
ASICs), which is challenging for several reasons.  First, the Anton 
ASIC is a heterogeneous multicore system-on-a-chip, with three 
types of embedded cores tightly coupled to special-purpose hard-
ware units.  Second, a standard 512-ASIC configuration contains 
a total of 6,656 distinct embedded cores, all of which must be 
explicitly modeled within the simulator.  Third, a portion of the 
embedded software is dynamically generated at simulation time. 

This paper discusses the various ways in which the Anton simula-
tor addresses these challenges.  We use a hardware abstraction 
layer that allows embedded software source code to be compiled 
without modification for either the simulation host or the hard-
ware target.  We report on the effectiveness of embedding golden-
model testbenches within the simulator to verify embedded soft-
ware as it runs.  We also describe our hardware-software co-
simulation strategy for dynamically generated embedded soft-
ware.  Finally, we use a methodology that we refer to as concur-
rent mixed-level simulation to model embedded cores within mas-
sively parallel systems.  These techniques allow the Anton simu-
lator to serve as an efficient platform for embedded software de-
velopment. 
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1. INTRODUCTION 
Anton is a special-purpose parallel machine, currently under con-
struction, that is expected to dramatically accelerate molecular 
dynamics (MD) computations relative to other parallel solutions 
[13].  The standard Anton configuration will consist of 512 iden-
tical ASICs connected by high-speed links to form a three-
dimensional torus.  Each ASIC contains two computational sub-
systems: a high-throughput interaction subsystem (HTIS) [8], in 
which specialized datapaths compute pairwise interactions be-
tween particles, and a flexible subsystem [7], in which program-
mable embedded processors are used to perform other numerical 
tasks and to control the overall computation.  In total, each ASIC 
contains 13 embedded processors: an interaction control block 
(ICB) core used to control the HTIS, four general-purpose (GP) 
cores used to control the flexible subsystem and drive the overall 
MD algorithm, and eight geometry cores (GCs) which perform 
the bulk of the numerical computation within the flexible subsys-
tem.  The GP and ICB cores are specialized versions of the Ten-
silica LX customizable processor [15], while the GCs were devel-
oped specifically for Anton.  

Anton’s hardware-software codesign effort made extensive use of 
an architectural simulator to simultaneously evaluate multiple 
algorithms, hardware accelerators, and software implementations.  
Initially, this simulator was used for high-level architectural ex-
ploration, with the flexible subsystem tasks implemented behav-
iorally.  As the design evolved, functionality was partitioned be-
tween hardware blocks and embedded software, and the simulator 
became a platform for architectural validation, detailed perform-
ance estimates, performance/area trade-offs, and embedded soft-
ware development.  In addition, enough detail was added to the 
simulator to support hardware design verification and the devel-
opment of system-level control/debug software that runs exter-
nally to the ASICs.  To our knowledge, this diversity of roles for 
a single simulator code base is extremely rare in a hardware pro-
ject of this scope.  In this paper, we focus on the mechanisms used 
to support hardware-software co-simulation and embedded soft-
ware development within the Anton simulator.  

The nature of Anton’s embedded software does not lend itself to 
conventional simulation techniques.  The code for the GP cores, 
which emerged directly from Anton’s hardware-software 
codesign effort, rapidly evolved along with the hardware design, 
and required strong debugging support from the simulator.  There 
is no compiler for the GCs, so the numerical code exists in two 
forms: C++ code that runs within a functional GC model, and 
manually generated assembly code that runs on the GC Instruc-
tion Set Simulator (ISS).  The ICB code, which delivers a se-
quence of control instructions to the HTIS, does not even exist at 
compile time: rather, it is dynamically generated based on the 
specific molecular system being modeled. 
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Architectural simulations of Anton also differ from traditional 
embedded processor simulations in both duration and size.  A 
single MD time step (the unit of discretization for an MD compu-
tation) takes a few microseconds on Anton or, equivalently, a few 
thousand clock cycles.  While Anton is intended to run calcula-
tions for hundreds of billions of such time steps (over a quadril-
lion clock cycles), it generally suffices to simulate fewer than ten 
time steps for performance modeling and software debugging 
purposes.  On the other hand, simulating a 512-node Anton ma-
chine requires significant resources, as such a machine contains a 
total of 6,656 distinct embedded cores.  Thus, architectural simu-
lations of Anton are short (few cycles) but large (many cores, 
hardware units, and memories) compared to most embedded-
processor simulations. 

The following sections present our simulation methodologies for 
Anton’s embedded cores; the techniques that we describe address 
our unique simulation needs and provide an efficient platform for 
embedded software development.  For the GP cores, we show 
how the use of a hardware abstraction layer allows the full GP 
embedded software to be compiled without modification for the 
simulation host processor and linked to the simulator executable.  
For the GCs, we borrow from hardware design verification by 
using golden models within the simulator.  For the ICB cores, we 
generate a high-level command sequence that can either be di-
rectly interpreted or used to produce compilable source code.  
Finally, we use a methodology, which we refer to as concurrent 
mixed-level simulation, to accelerate ISS-level simulations of 
massively parallel systems by restricting the use of detailed ISS 
models to a single simulated node; this technique allows us to 
efficiently meet our verification and performance estimation re-
quirements. 

2. MODELING THE GP CORES USING A 
HARDWARE ABSTRACTION LAYER 
Initial versions of the embedded software were written in C++ 
and directly linked to the simulator executable.  Once we selected 
an implementation for the GP cores, specifically Tensilica LX 
processors with customized extensions, it was necessary to adapt 
the embedded software to the Tensilica processor and modify the 
simulator to support embedded software development for this 

platform.  The Tensilica processors come with an interpreter-
based, cycle-accurate ISS and a mature optimizing C compiler.  
However, we were concerned about both the speed and memory 
footprint of the interpreted ISS, especially given that a full-
machine simulation would involve 2,048 GP cores. 

A variety of clever techniques for accelerating the simulation of 
embedded processors already exist and offer various trade-offs 
among speed, accuracy and flexibility (Figure 1).  Direct execu-
tion [12] runs portions of the application software on the simula-
tion host processor rather than on an ISS for the target architec-
ture; this requires the host and target architectures to be the same.  
When the host and target architectures differ, two methods can be 
used to accelerate the interpretation of target binaries: compiled 
simulation [1, 11, 17, 20, 21] uncompiles target binaries to a high-
level language (usually C or C++) which is then recompiled for 
the host architecture; dynamic translation [9, 10, 18] translates 
target machine instructions into one or more host machine instruc-
tions at simulation time.  If the embedded software source code is 
available, it is possible to adopt the recently proposed virtual 
coprocessor [3] approach in which the source code is automati-
cally instrumented and then compiled for the host architecture.  
This instrumentation allows the simulation to dynamically switch 
between the target ISS and the native host binary at function-call 
boundaries, giving the effect of fast “coprocessor” function calls 
from the slower ISS. 

Although these techniques provide enormous speedups over an 
interpreted ISS and are extremely flexible in the types of embed-
ded software that they support, they require different workflows 
for the hardware simulator and the embedded software, which in 
our case was undesirable.  To best support Anton’s hardware-
software codesign effort, we required a uniform development and 
debugging environment for both the hardware simulation and the 
embedded software.  We therefore introduced a hardware abstrac-
tion layer (HAL) that allows the unmodified GP embedded soft-
ware to be compiled in its entirety for either the host or target 
processors.  Two corresponding GP core models exist within the 
simulator: a high-level model that runs the embedded software as 
a native binary, and a low-level model that runs the embedded 
software as a target binary on the Tensilica ISS.  This method 
provides the required uniform development environment as well 
as extremely fast execution of the embedded software. 
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Figure 1.  Overview of techniques for accelerating embedded processor simulations.  The embedded processor 
is the target; the processor that runs the simulation is the host. 
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The use of a HAL requires defining a hardware-level API with 
two architecture-specific implementations: a host implementation 
that runs within the simulator itself, and a target implementation 
that runs on the target ISS and reads/writes the target processor 
interface signals modeled by the ISS.  All of the hardware func-
tionality available to application programs must be encapsulated 
within this API, and all embedded software must use the API 
instead of directly accessing hardware features.  This restriction 
makes the use of a HAL unsuitable for simulation platforms that 
need to support externally supplied or pre-existing software, 
unless the cost of refactoring the software to use the API is suffi-
ciently low.  In our case, all embedded software was internally 
developed during the course of the project, so this was not an 
issue. 

2.1 Hardware API 
The Anton simulator uses an internally developed cycle-based 
C++ simulation infrastructure that supports hardware interfaces 
with ports and connections.  We defined a single hardware inter-
face shared by both the high-level (native binary linked with 
simulator) and low-level (target binary running on ISS) GP core 
models, so that the choice of model is transparent to the rest of the 
simulation.  The interface consists of several hardware queues, 
which are used for direct communication between the GP cores, 
and load/store access to a remote access unit (RAU), which per-
forms autonomous data transfers.  The hardware API used by the 
embedded software contains functions for accessing the queues 
and managing the RAU. 

In the high-level GP core model, the embedded software runs 
natively within a QuickThread [5]—a user-level thread that must 
be manually scheduled by the simulator, and that must explicitly 
relinquish control (“yield”) to suspend its execution and allow the 
simulator to resume.  There is no inherent measure of time in 
these threads; instead, annotations are added to the embedded 
software by programmers to model the passage of time.  These 
annotations simply increment the local time and do not otherwise 
interfere with execution, so the threads are allowed to “run ahead” 
of the global simulation time.  The high-level implementation of 
each hardware API function first synchronizes to the global simu-
lation time by yielding, if necessary, until the rest of the simula-
tion has caught up.  Once the local and global times have been 
synchronized, the API function can safely execute by read-
ing/writing the appropriate hardware interface ports. 

The low-level GP core model uses Tensilica’s XTMP cycle-
accurate ISS [16], which advances in lockstep with the main cy-
cle-driven simulation.  The hardware API is implemented in C; 
the queue access functions (push, pop, peek) delegate to corre-
sponding processor instructions, while the RAU management 
functions perform reads and writes to a memory-mapped RAU 
interface.  When an API function reads or writes a processor inter-
face signal, the XTMP library invokes a callback function within 
the simulator that forwards the read/write to the appropriate 
port(s) of the hardware interface (Figure 2). 

2.2 Memory Visibility 
Each GP core in the flexible subsystem has a private data cache, 
and is connected to an SRAM that is shared with the RAU and 
two of the GCs.  For both GP core models, we needed to preserve 
two types of visibility into these memories.  First, data visibility 

was required for various global validation functions.  At certain 
points in the MD time step, these functions check the consistency 
of data structures across the machine using “simulator magic”, i.e. 
by directly accessing deeply buried implementation state.  These 
consistency checks were critical for debugging the embedded 
software, and required visibility into the contents of both the data 
cache and the shared SRAM.  Second, access visibility was re-
quired for accurate performance modeling.  SRAM bandwidth 
and contention were important factors contributing to perform-
ance, so the simulator needed to be able to detect SRAM accesses 
to properly account for these effects.   

Data visibility was fairly straightforward to implement.  The 
shared SRAM was modeled independently and was always avail-
able for inspection.  In the low-level GP core model, the data 
cache is, by default, not visible because it is part of the ISS, but 
we restored visibility by setting the cache mode to write-through.  
We used the same in-memory data structure (defined by a C 
struct) to hold the contents of the cache for both the high-level 
and low-level GP core models: in the high-level model the em-
bedded software modified this structure directly, while in the low-
level model this structure was a copy of the contents of the ISS 
cache, and was kept up-to-date by the XTMP write-through call-
back handler.  A small (but important) note is that some care was 
required in aligning the contents of this data structure to ensure 
that both the host compiler (gcc) and the Tensilica compiler (xt-
xcc) would produce exactly the same data layouts. 

Obtaining visibility to SRAM accesses required slightly more 
engineering.  This visibility was already present in the low-level 
model because XTMP uses callbacks to access SRAM, but in the 
natural high-level implementation, the embedded software would 
directly read and write the SRAM data structure elements, so 
there would be no way for the simulator to monitor these ac-
cesses.  Our solution was to wrap every reference to SRAM 
within a macro.  In the target builds (which run on the ISS), this 
macro expands to a direct data access.  In the host builds (which 
are linked to the simulator), the macro expansion also includes a 
notification callback, which allows the simulator to properly 
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Figure 2.  The high-level and low-level GP core models share 
a common GP core hardware interface.  The interface is ac-
cessed directly by the high-level hardware API, and indirectly 
by the low-level hardware API via XTMP callbacks. 
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model SRAM contention between the GP cores and the other 
hardware components. 

2.3 Instrumentation 
One of the advantages of a HAL-based methodology is that it 
makes it easy to add various instrumentation to the code (asser-
tions, validation, printfs, etc.) by using macros that are only im-
plemented in the host builds.  This approach is not possible with 
simulation techniques that use target binaries as an intermediate 
representation, although we note that the virtual coprocessor tech-
nique not only supports instrumentation, but can in some cases 
add it to the code automatically.  

The instrumentation functions use simulator magic to perform 
their duties and cannot be implemented in the production binaries 
that run on the Anton ASIC.  It was, however, desirable to pre-
serve their functionality in the ISS-level simulations.  We accom-
plished this by defining three versions of the instrumentation mac-
ros depending on preprocessor definitions: in the host builds, the 
macros become function calls; in production target builds in-
tended for the Anton ASIC, they are simply removed; and in tar-
get builds intended for ISS simulation, they are implemented as 
writes to an otherwise-unused portion of data memory.  For these 
“instrumentation writes”, the memory address specifies the in-
strumentation function to invoke, and the 128-bit write data con-
tains up to four arguments.  The XTMP callback that handles data 
memory writes then invokes the appropriate instrumentation func-
tion with the supplied arguments. 

3. VERIFYING GC CODE WITH 
EMBEDDED GOLDEN MODELS 
We did not have a compiler for the GCs, which placed us in the 
unenviable position of having to write two versions of the nu-
merical code: a high-level version, written in C++, which could 
be linked to the simulator executable; and a low-level version, 
written in assembly, which would run on the ISS.  In our software 
development workflow, the high-level code has always been writ-
ten and tested first for two reasons.  First, it is much easier and 
faster to work with natively-compiled C++ than emulated assem-
bly.  Second, C++ versions of the numerical computations are 
required by the sequential validator—a single-threaded imple-
mentation of the MD algorithm used to verify (bitwise) the com-
putation performed on the simulated parallel machine.  Once the 
high-level GC code has been implemented and tested, the identi-
cal computation is then hand-coded in assembly. 

We considered a variety of approaches for working within a sin-
gle code base, either by programming entirely at the assembly 
level and using compiled simulation techniques to address simula-
tion speed, or by using a stylized subset of C that could be auto-
matically converted to efficient assembly language without the 
need for a full-featured compiler.  None of these approaches, 
however, would have provided us with both the ease of coding 
and sequential validator support that we desired for initial devel-
opment, and the highly optimized assembly code that we required 
for production binaries. 

Because we were unable to eliminate the dual implementations of 
the GC code, we strove instead to leverage these multiple imple-
mentations to our advantage.  We did so by making use of the 
standard golden model methodology for block-level hardware 

design-verification testbenches.  In this methodology, the device 
under test (DUT) is simulated side-by-side with a golden model—
a behavioral implementation of the block that conforms to the 
hardware specification.  The DUT and the golden model are pre-
sented with identical stimuli, and the testbench compares their 
outputs.  In the Anton simulator, each GC ISS (which acts as the 
DUT) is instantiated alongside a high-level GC (which acts as the 
golden model) within an “embedded testbench”.  The simulator 
supplies the same inputs to each model, and verifies that the out-
puts are identical.  In this manner, we obtain substantial verifica-
tion of the GC assembly code by ensuring that its results exactly 
match those produced by the reference C++ implementation. 

This technique proved to be extremely effective for isolating bugs 
in the numerical code.  Although these bugs would eventually 
manifest as miscomparisons between the outputs of the ISS-level 
Anton simulator and the sequential validator, such miscompari-
sons are difficult to diagnose because the source of the problem 
could be in any portion of the MD computation.  Using golden 
model verification for the GCs localized these bugs both in origin 
(which GC was the source of the error) and in time (at which 
point of the MD computation the error occurred), enormously 
simplifying the debugging task. 

3.1 Transaction-Level Verification 
The high-level GC models, like the high-level models of the GP 
cores, execute natively within QuickThreads and have no intrinsic 
notion of time.  The code is manually annotated with the amount 
of time that various computations take, based on performance 
numbers obtained from the low-level (ISS) simulations.  The re-
sulting timing of the high-level model is an approximation only; 
in particular, it is not possible to compare the outputs of the high- 
and low-level GC models on a cycle-by-cycle basis.  Instead, 
golden model verification is performed at the transaction level, 
which is made significantly easier by the fact that the GC hard-
ware interface is entirely queue-based.  Input data is copied into 
two corresponding queues, one for each GC model.  Output data 
from the two models is merged: when data is available on the 
corresponding output queues in both models, it is compared bit-
wise before being forwarded to the rest of the simulation.  This 
functionality is encapsulated within a C++ class that contains both 
GC models and has the same hardware interface as a single GC, 
so that the instantiation of a verification testbench in place of a 
GC is transparent to the rest of the simulation (Figure 3). 

Figure 3.  The embedded GC testbench has the same hard-
ware interface as a single GC, but contains both high-level 
and low-level GC models.  Input data is copied to both mod-
els. Output data is synchronized and compared before being 
forwarded to the rest of the simulation. 

Embedded GC testbench 

high-level 
GC (C++) 

low-level 
GC (ISS) 

=

=

128



4. SIMULATING THE ICB USING  
COMMAND SEQUENCE INTERPRETATION 
The ICB core in the HTIS is responsible for coordinating the 
movement of data from a set of memory buffers to an array of 
hardware datapaths that compute pairwise particle interactions.  It 
does so by pushing a sequence of buffer allocation, data move-
ment and synchronization commands onto a queue; the commands 
are then executed by the HTIS hardware.  This command-queue 
interface provides a convenient abstraction layer for the ICB em-
bedded software: within the simulator, an ICB model emits a 
sequence of commands that are directly interpreted by the HTIS 
hardware model.  The specific sequence of commands required to 
orchestrate the HTIS computation, however, depends on both the 
size of the molecular system being modeled and the parameters of 
the MD computation, and as such is not known at compile time.  
Instead, these command sequences are dynamically generated by 
the simulator executable as a preparation step; the high-level ICB 
model simply stores the generated commands and pushes them 
onto the command queue. 

Once the Tensilica ICB core was specified, including specialized 
processor instructions used to push commands onto the queue, 
actual binaries were required for the detailed ISS simulations.  A 
generic binary would have been too large to fit in the ICB core’s 
limited instruction memory; it was therefore necessary to dynami-
cally generate binaries specialized to the molecular system being 
modeled and the parameters of the MD computation.  This was 
accomplished by expanding the preparation step to automatically 
generate compilable C code from the internal representation of the 
command sequence.  Each command is emitted as a single macro 
or processor instruction; a fixed header file provides definitions 
for all required macros, constants, and inline functions.  The Ten-
silica compiler is invoked from within the simulator executable to 
generate the ICB binary, which is then interpreted by the Ten-
silica ISS during the simulation (Figure 4). 

5. CONCURRENT MIXED-LEVEL 
SIMULATION 
High-level processor models are much faster than ISS-level mod-
els, and are therefore generally preferred for embedded software 
development.  It is, however, still necessary to test the embedded 
software on ISS-level models, as this is the only way to ensure the 
correctness of the target executable.  One of the problems we 
encountered with the GP code, for example, was related to an 
unanticipated reordering of memory accesses by Tensilica’s opti-
mizing compiler.  The ISS models are also important for verifying 
the interaction between the processors and the rest of the system; 
several problems with the ICB core were discovered when the 
ISS-level ICB model failed to exactly reproduce the original se-
quence of HTIS commands.  A second function of ISS-level simu-
lations is to provide more accurate performance estimates, par-
ticularly when timing annotations in the embedded software are 
missing or outdated. 

One of the simplest and most commonly used techniques to ad-
dress the slow speed of ISS-level simulation is “fast-forwarding”, 
which uses fast high-level models to initialize the simulation, then 
switches to slower detailed models to obtain performance esti-
mates for targeted regions of code [14, 19].  This approach is 
effective for conventional simulations in which the run time for 

the software of interest is much shorter than the processor initiali-
zation time, but for Anton the reverse is true—the majority of 
time is spent performing the computations for which we desire 
ISS-level validation and performance estimates. 

ISS-level simulations of Anton are also challenging due to the 
large number of embedded processors in a 512-node machine.  In 
fact, the XTMP ISS supplied by Tensilica for the GP and ICB 
cores does not even support simulations of this scale: it is only 
available as a 32-bit library, requiring the simulator to fit within a 
4 GB virtual address space, but XTMP is fairly inefficient in its 
use of memory and would require in excess of 20 GB to simulate 
the requisite 2560 Tensilica cores.  In principle, one could address 
this limitation by parallelizing the simulation itself, but we instead 
used an alternate methodology that altogether eliminates the need 
for full-machine ISS simulations. 

A key observation is that all 512 nodes in a full machine run the 
same embedded software, so from a verification perspective it 
suffices to use ISS models for a single node only.  We adopted 
this approach, which we refer to as concurrent mixed-level simu-
lation (CMLS) to distinguish it from mixed-level simulations that 
sequentially alternate between high- and low-level processor 
models.  Because the use of detailed models is restricted to a sin-
gle node, the overall impact on memory usage and execution time 
is significantly reduced from a full-machine ISS-level simulation.  
Mixed-level simulations have been applied to single-chip multi-
processor designs with different processors modeled using differ-
ent levels of detail [4].  CMLS, in the context of a parallel ma-
chine, has the advantage that a full ASIC is modeled in detail, so a 
single simulation tests all embedded software at the ISS level, and 
also tests all pairs of interactions between ISS-level processor 
models. 

On its own, CMLS does not give very good performance esti-
mates, so we used a standard annotation approach to obtain more 
accurate performance data.  The first step is to run a simulation 
with one ISS-level node; the execution traces from this node are 
used to annotate the embedded software with appropriate delays.  
High-level simulations can then be run with the annotated soft-
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Figure 4.  The high-level ICB model pushes a list of gener-
ated HTIS commands directly onto the command queue.   
For the ISS-level ICB model, the command sequence is used 
to generate and compile source code which is executed on the 
ICB core ISS; the ISS regenerates the original commands 
and places them on the command queue. 
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ware to obtain performance estimates.  Table 1 shows the results 
of this methodology for a 64-node Anton configuration (sized so 
that a full-ISS simulation would fit in memory).  Before annota-
tion, the high-level simulation overestimates performance by 55% 
compared to the full-ISS simulation.  The CMLS is more accu-
rate, but still overestimates performance by 31%.  When data 
from the CMLS run is used to annotate the embedded software, 
the annotated high-level simulation is accurate to within 15%, but 
runs nearly seven times faster than the full-ISS simulation.  We 
note that while a manual annotation process was sufficient for our 
purposes, one can also automatically obtain timing annotations 
from a static analysis of the target executable [2, 6]. 

Table 1.  Anton performance estimates obtained from four 
different types of simulation of a 64-node configuration. 

Type of Simulation Predicted Performance 
(μs per MD time step) 

Error 

Full ISS 44.7 baseline 
High-level (unannotated) 19.9 55% 
CMLS 31.0 31% 
High-level (annotated) 38.0 15% 

6. CONCLUSION 
Simulation was central to the hardware-software codesign process 
that gave rise to the Anton architecture.  This architecture, which 
will allow Anton to achieve dramatic speedups over general-
purpose approaches to MD, originally existed as pure software 
within early versions of the Anton simulator.  As the architecture 
was refined, a single code base was partitioned into a hardware 
simulation tightly coupled to embedded software.  The techniques 
described in this paper—using a hardware abstraction layer, 
golden model comparison of high- and low-level GC code, com-
mand sequence interpretation, and concurrent mixed-level simula-
tion—allowed the continued use of the Anton simulator as an 
effective platform for embedded software development.  The high 
fidelity and strong debugging support afforded by these tech-
niques were essential for the pre-silicon development of fully-
functional embedded software.  As a testament to the success of 
the simulator in this regard, when the first Anton chips were de-
livered at the start of 2008, the embedded software—developed 
entirely within simulation—was ported to the actual hardware in a 
matter of days with only minor modifications. 
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