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Abstract—Applying formal methods to assist in the post-silicon 
debugging of complex digital designs presents challenges that 
are distinct from those found in pre-silicon formal verification.  
In post-silicon debug, a set of observed events or conditions 
describes a failure scenario.  The task is to identify a reasonably 
general set of input and hardware state conditions that 
inevitably produces that failure scenario.  That set of conditions 
may be represented in the form of a counterexample to a desired 
property.  Modern formal verification methods are especially 
adept at finding counterexamples to properties, and can often do 
so efficiently in large state spaces.  This paper describes a 
method of assisting the discovery of counterexamples using user-
hypothesized preconditions, or waypoints, of the failure.  Each 
waypoint is an event that is believed to occur prior to the 
observed failure of the target property.  By guiding formal 
analysis through a sequence of waypoints, the time required to 
find a counterexample of the target property can be significantly 
reduced.  A specific case study is presented to illustrate the 
application and performance of our method using an actual 
example from the post-silicon debug of a 33-million–gate chip.   

I. INTRODUCTION 
The post-silicon debug of functional errors in large, highly 

complex Application-Specific Integrated Circuits (ASICs) 
frequently requires extensive detective work to isolate 
symptoms and identify underlying causes.  Lack of 
observability, long runtimes to reach the error state, and 
imprecise control of event timing make many post-silicon bug 
hunts tedious and time-consuming endeavors. 

In this paper, we describe one such bug hunt involving the 
Anton ASIC [1], a 33-million–gate chip designed to accelerate 
molecular dynamics (MD) calculations.  In this case, the ASIC 
exhibited erroneous behavior resulting in occasional memory 
corruption.  The symptoms of the error (the error signature) 
were analyzed and a hypothesis of how the error occurred was 
formulated.  This hypothesis involved certain complex corner-
case conditions and particular event sequences.  Extensive 
random simulation targeting the bug, however, did not 
succeed in validating this hypothesis.  This was primarily a 
result of the fact that the bug appeared only in a specific, hard-
to-reach hardware state whose occurrence was dependent on 

the precise timing of input stimuli. 

The bug was eventually isolated and reproduced through a 
process of formal verification based on model checking [2].  
In particular, we used an approach based on targeting sets of 
conditions called waypoints, which are hypothesized by the 
user to necessarily occur en route to the bug in question.  The 
bug was found to lie beyond the practical reach of standard 
(bounded) model checking from a reset state, which could 
only complete exhaustive analysis to 65 cycles within a three-
day time limit and a 32-GB memory limit.  Using the method 
described here, however, the hypothesized cause of the bug 
was analyzed to generate waypoints, which were then targeted 
by model checking.  Once an input sequence was found that 
led to a given waypoint, a state trace was generated, then used 
as the initialization sequence for model checking to the next 
waypoint or to the eventual error condition. 

In this way, formal verification was guided to find the bug 
at a depth of 69 cycles from reset within ten hours of 
computation.  Although the bug was only four cycles beyond 
the exhaustive analysis from reset, those additional cycles 
have high computational complexity, which would have made 
analysis using standard model checking impractical to 
complete within a reasonable amount of time.  By using 
waypoints to reduce the amount of analysis needed to find the 
error trace, however, we were able to validate the 
hypothesized cause of the bug without a prohibitive 
expenditure of computational resources.  This approach also 
allowed the analysis of conditions around the bug, and 
ultimately confirmed that the error would no longer occur 
after the design was corrected. 

In the remainder of this paper, we discuss each of the 
major steps in our method, including (1) converting error 
symptoms into assertions, (2) finding the right level of logic to 
analyze so that the bug can be exhibited, (3) choosing the 
appropriate places in the design to abstract logic, (4) setting 
the necessary input constraints, and (5) finding the trace to the 
bug.  We also present runtime data comparing standard model 
checking of the error assertion to guided model checking 
using waypoints. 
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II. POST-SILICON FORMAL VERIFICATION  
Most complex ASICs require post-silicon debug.  Much 

previous work has occurred in developing techniques to 
increase observability of the internal state in the fabricated 
design [3] as well as in techniques for automatically isolating 
erroneous logic [4].  One of the steps in post-silicon debug is 
to confirm that a hypothesis about an error can really account 
for the observed symptoms.  The design team wants to know 
the exact hardware state and input sequence that would trigger 
the error. 

Formal analysis, in particular model checking, has proved 
useful for finding the specific cause of a known error 
condition [5].  If the symptoms of the error can be represented 
as a property, then a counterexample (cex) to the property 
gives the sequence of stimuli and design-state transitions (a 
trace) that lead to the error. 

Prior knowledge of the existence of such a counterexample 
sidesteps some of the difficulties of standard model checking 
on a property whose truth is not known for certain.  This 
section discusses the optimizations that can be applied for 
post-silicon debug with formal verification.  First, the 
selection of model-checking algorithms can be restricted to 
those optimized for finding counterexamples; second, the 
accuracy and generality of input constraints can be relaxed 
with information from the error signature; and third, model 
checking can be applied with waypoints to reduce the amount 
of analysis needed to find the trace. 

A. Model-Checking Algorithms 
Model checking is the mathematical process of 

determining whether a property holds true for a particular 
model of a system.  In the context of this paper, a model is a 
representation of the hardware design.  Model checking can 
produce either (1) a proof that the property holds in the model; 
or (2) a counterexample showing the input- and state-sequence 
that demonstrates a violation of the property within the model.  
In practice, a third result (undetermined) often occurs because 
the model checking algorithm runs out of time or memory 
before either of the definitive results can be obtained.   

There are several algorithms for model checking [6], 
including explicit state enumeration, symbolic model checking 
with binary-decision diagrams, satisfiability-based model 
checking (also known as SAT), induction, interpolation, and 
variations and improvements of above algorithms (symmetry, 
abstraction refinement, etc.).  For the purpose of finding a 
trace to an error signature, we can limit the choice of model-
checking algorithm to those which are well-suited to finding 
counterexamples, such as SAT.   

Finding long counterexamples is a key problem in model 
checking.  Yang and Dill [7] use preconditions of a property to 
guide model checking.  Ganai et al. [8] use manually and 
automatically-generated hints from a design description for 
difficult to reach coverage points.  Bjesse and Kukula [9] 

exploit abstractions to generate long counterexamples.  Wang 
et al. [10] have developed a technique that targets long bugs 
that have a regular pattern, which can be proved by induction. 

B. Accuracy of Input Constraints 
In pre-silicon verification, the accuracy of input constraints 

is a major factor in the success of formal verification.  Without 
an accurate and complete set of input constraints, 
counterexamples may be found that utilize illegal input 
sequences.  Analyzing such illegal counterexamples not only 
wastes time, but also prevents the possibility of a proof being 
found for the property until all illegal sequences that can 
produce a counterexample are excluded from analysis. 

Fortunately, in post-silicon debug model checking, this 
stringent requirement can be relaxed.  In particular, since 
model checking is typically deployed only if the trace of the 
error signature is difficult to obtain in simulation, it is often 
the case that even traces with some illegal stimuli can shed 
light on the conditions necessary to exercise the 
bug.

 
 

In addition, some aspects of the input sequence needed to 
exercise the bug may be known from the observed error; it is 
therefore possible to overconstrain the input space (relative to 
the full set of legal stimuli) to limit or “guide” the formal 
analysis.  Consider the situation, for example, of a bug that 

Figure 1. Setting input constraints 



only occurs on a read operation following a cache-miss.  The 
input constraints can then be set so that analysis only occurs 
down paths that include a cache-miss followed by a read.  
Such over-constraining of inputs would not be appropriate in 
pre-silicon verification because it may mask bugs. 

Some commercial SAT implementations do not actually 
limit formal analysis to legal input sequences, but do limit the 
traces presented to the user, so they may not observe a 
performance improvement from over-constraining.  There is 
still a benefit, however, from the reduction of traces to be 
debugged, as the only traces to be considered are those where 
known input events occur.  Noting these relaxed requirements, 
the methodology for post-silicon debug, shown in Fig. 1, 
becomes a mixture of over- and underconstraining.  One starts 
with constraints that match the observed error signature.  
These constraints may limit the possible input sequences to a 
set that is much smaller that the full set of legal inputs.  All 
other inputs should be lightly constrained so as not to prevent 
any legal input sequences.  Additional input constraints can 
then be added to remove illegal sequences observed in 
counterexamples that are found. 

C. Formal Verification Waypoints 
When navigating to an unfamiliar destination, savvy 

travelers occasionally use waypoints (also known as 
landmarks or guideposts) to check that they are progressing on 
the right path towards their desired destination.  A similar 
concept can be utilized when trying to find a trace to an error 
signature. 

Yang and Dill [7] proposed using interesting or required 
preconditions (which they called “guideposts”) of a property 
to assist explicit state-enumeration model checkers.  These 
preconditions are events defined by engineers using 
knowledge about the design and the target property to provide 
sub-goals for formal analysis.  Yang and Dill used guideposts 
to influence the order of state-space exploration so that paths 
which encountered more preconditions would be explored 
first. 

In this work, we use similarly defined preconditions.  Our 
use of the preconditions (“waypoints”), however, is to propel 
the initial state to be used in model checking deep into the 
state-space of the model.  The steps for using waypoints to 
find a trace to an error signature are: 

1. Identify one or more waypoints. 

2. Order the waypoints 1, …, n, with waypoint n as the error 
signature. 

3. Starting with waypoint 1 and an initialization sequence 
that is just the reset sequence: 

a. Set the waypoint as the target property. 

b. Set the initialization sequence for model 
checker. 

c. Model check. 

d. If no trace is found, return to step (1) and 
identify additional waypoints prior to waypoint 
1. 

e. If a trace is found, save the trace in the format to 
be used as initialization sequence in step (b) for 
model checking. 

f. Set the next waypoint as the target property. 

g. Return to step (c). 

 

When one uses a trace to a waypoint as the initialization 
sequence for model checking the next waypoint, some state 
values of the model that the user believes are required to reach 
the target property get set up.  Using waypoints to set up these 
intermediate states ensures that only reachable combinations 
of states are used, as opposed to setting up the state in some 
arbitrary way that may not be reachable from reset.  Doing so 
reduces the scope of analysis at each step, as shown in Fig. 2.  

 
Figure 2. Waypoints reduce analysis region 

Waypoints, deployed in this manner, are useful for 
targeting a particular property believed to be false, i.e. a 
property for which a counterexample exists.  There is, 
however, no guarantee that the trace to an error signature will 
pass through any or all of the waypoints defined by a user.  It 
is possible for a user to misunderstand an error signature and 
define waypoints in such a way as to prevent a model checker 
from finding a trace.  This will become evident when a trace 
cannot be found to any one of the waypoints in the sequence 
1, …, n of waypoints within reasonable limits of time and 
memory.  The only recourse when this happens is to re-
examine the waypoints and alter them or their sequencing. 



III. POST-SILICON DEBUG CASE STUDY 
This section provides a case study of applications of 

formal verification with waypoints for the post-silicon debug 
of the Anton ASIC.  We start with a brief overview of the 
Anton architecture.  A more detailed explanation of the 
architecture and how it is used to perform MD computations 
can be found in [1]. 

A. The Anton ASIC 
Anton is designed to accelerate MD computations, which 

model the motion of a collection of atoms according to 
Newton’s laws of physics.  An MD computation divides 
continuous time into a sequence of discrete time steps.  
Typically, each time step represents a few femtoseconds of 
physical time; Anton is intended to run MD computations for 
up to milliseconds of physical time (close to a trillion discrete 
time steps). 

Anton achieves the speed required for computations of this 
scale through a combination of specialized hardware, high-
bandwidth communication, and fine-grained parallelism.  The 
Anton ASIC (block diagram shown in Fig. 3) consists of two 
main computational subsystems: the high-throughput 
interaction subsystem (HTIS) [11], which computes pairwise 
interactions, and the flexible subsystem [12], which contains a 
number of programmable processors.  Two memory 
controllers are connected to off-chip dynamic random-access 
memory (DRAM).  A host interface communicates with an 
external host processor used to control and monitor the ASIC, 
and six communication channels connect the ASIC to its 
neighbors in the three-dimensional torus network.  These 
components communicate with one another by sending 
packets over a bidirectional on-chip communication ring, 
which consists of six identical routers connected in a loop.   

The first Anton ASICs were fabricated in late 2007.  In the 
bring-up process, various sample MD simulations were run.  
The successful runs are instructive, but during bring-up, it is 

the runs that exhibit problems that provide the most valuable 
(hardware and software) debug information.  A run can 
encounter problems in two ways: (1) the run can produce an 
internal error; and (2) the MD simulation can behave in an 
unexpected manner, for example, if the energy of the MD 
system deviates substantially from the expected range.  In 
each case, root-cause analysis can be undertaken using 
hardware and software instrumentation that reveals details 
about the operation of the hardware.  In many cases, the 
embedded software of Anton required modifications, but in 
several cases hardware errors were indicated.  None of the 
hardware errors were critical; each had an acceptable software 
workaround.  Nevertheless, investigations were launched to 
find the root cause of each error, so as to ensure we 
completely understood the problem and to consider possible 
hardware fixes for future versions of the Anton ASIC. 

One particular error found was described as follows 
(implementation-specific names have been replaced with 
functional descriptions for ease of understanding): 

 
This application-level error symptom translates to a 

memory corruption problem in the hardware.  It says that 
occasionally (only on a certain time step of the MD run), some 
data (representing forces calculated by the HTIS) that should 
accumulate in one memory location ended up at the wrong 
address in memory. 

B. Developing a Theory of the Error 
Analysis of the communication patterns between 

<memory area 1> and <memory area 2> revealed that one 
explanation that would be consistent with the error was if a 
race condition arose between the fill and evict operations of 
the memory system. 

Specifically, if an atomic accumulate-store data packet 
arrives at the memory controller such that it is supposed to 
evict <memory area 1> from the cache, the sequence of 
events that should occur is (Fig. 4): 

1. Eviction: <memory area 1> written back to DRAM 

2. Store: <packet data> is stored in cache line 

3. Fill: <memory area 2> is fetched from DRAM and 
added to <packet data> in cache line 

(The eviction and store operations are atomic) 

“Forces for packet 0 of  
      <memory area 1> and <memory area 2> 
are sometimes wrong on  
      time step #447 of a <MD system> run.  
 
It appears that the HTIS forces that are 
addressed to  
    packet 0 of <memory area 2>  
were delivered to  
    packet 0 of <memory area 1>.” 
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Figure 3. Anton ASIC Block Diagram 



 
Figure 4. Correct memory operation 

Now suppose that a race condition causes step 3 to occur 
first: 

1x. Fill: <memory area 2> is fetched from DRAM and 
added to <memory area 1> in the cache line 

2x. Eviction: incorrect <memory area 1> + <memory 
area 2> is written back to DRAM 

3x. Store: <packet data> is stored in cache line 

The result is that the forces that have been accumulating in 
<memory area 2> have been incorrectly added to <memory 
area 1>.  Immediately after step 1x, all the forces that are 
intended to be summed at <memory area 2> have effectively 
been transferred to <memory area 1>.  This incorrect update 
is then saved to DRAM in step 2x (Fig. 5). 

This hypothesized cause of the error, among all the 
theories brainstormed by the engineering team, was the only 
one consistent with the observed symptoms.  The next step 
was to identify how such a race condition might occur in the 
hardware implementation. 

C. Identifying Error Mechanism in Implementation 
With a conceptual theory of the error in hand, the next step 

was to match the steps of the theory to operations in the 
hardware implementation.  This step requires detailed 
knowledge of the register-transfer level (RTL) description to 
identify the corresponding logic and operations to match the 
events in the conceptual theory of the error.  Fig. 6 shows the 
relevant blocks in the memory controller of the Anton ASIC. 

The error sequence starts with a read-modify-write (rmw) 
operation arriving at the memory controller and causing a 
cache miss/evict operation.  This simply means that the 
memory line that the rmw-operation refers to is not currently 
stored in the cache and needs to be brought in from DRAM.  
To process the miss/evict operation, the control pipeline (CP) 

issues a miss/evict command to the data pipeline (DP) to save 
(back to DRAM) the current contents of the cache line that 
will be used for the operation.  Simultaneously, it issues a 
read request to the bank controller (BC) to fetch the targeted 
memory line. 

To prevent a race condition between the miss/evict and the 
read operations, the CP issues a 3-bit field (dpstall) with both 
operations.  The FIFO to queue up the miss/evict operations is 
five levels deep, so three bits to hold dpstall is sufficient to 
prevent duplicate values.  The read operation (in the BC) must 
wait for the corresponding dpstall value to be sent from the 
DP before it issues the read operation.  For its part, the DP 
should only issue the corresponding dpstall value when it is 
complete with the miss/evict operation.  In this way, the 
implementation is supposed to guarantee the order of 
operations shown in Fig. 4.  

Packet Data

0. Packet arrives

1. Cache line 
evicted to DRAM

2. Packet Data 
stored in cache 

line

3. MemArea 2 is 
added to cache line

CACHE

DRAM
MemArea 1

MemArea 2 + 
Packet Data

MemArea 1

MemArea 2

DRAM

MemArea 1

MemArea 2

 
 

Figure 5. Race condition causes memory corruption 
 

Figure 6. Memory controller blocks 



The only event sequence that would allow the fill 
operation to overtake the evict operation would be if the 
dpstall signal should wrap and issue the same dpstall tag to 
two miss/evict operations.  Then, when the first miss/evict 
operation completes and forwards its dpstall tag to the BC, 
both corresponding read commands are unblocked.  This 
would enable the second read operation to get ahead of its 
corresponding miss/evict operation.   

Hence, the error signature could result from the following 
sequence of events: (1) a single dpstall tag sent from the DP to 
the BC unblocks multiple read operation (Waypoint 1); (2) fill 
of cache line with particular dpstall tag (Waypoint 2); and (3) 
store of cache line with same dpstall tag, indicating that the 
fill operation has occurred before the evict operation (Error 
Signature).  This sequence becomes the set of waypoints used 
to find the error signature. 

D. Confirming Theory and Verifying Fix 
Once an error mechanism in the hardware implementation 

is identified as a candidate root cause, it is necessary to 
confirm that the sequence of events in the mechanism occur as 
predicted and result in the error signature.  In many cases, this 
can be accomplished in simulation with modifications to 
existing test environments.  In other cases, ours included, 
simulation cannot activate the full sequence of events 
hypothesized in the error mechanism.  Formal verification 
(model checking) provides an alternative method to do so.  
The necessary steps follow the standard formal verification 
methodology: 

1. Write assertions to detect error mechanism.  Our 
assertions were created with the SystemVerilog 
Assertion (SVA) language as well as the Open 
Verification Library (OVL).  The three main 
assertions written covered the two waypoints 
identified and the final error signature. 

2. Determine correct cone of analysis.  The cone of 
analysis is the logic within the transitive fanin of the 
target property.  Ideally, the entire design is analyzed 
while looking for the error.  This is not practical in 
any but the smallest designs.  Choosing a subset of the 
design is common practice for FV; on the other hand, 
choosing a design subset that is too small leads to 
greater difficulties in defining the input constraints for 
FV.  Also, it is necessary to ensure that all the logic 
involved in the error is captured within the design 
subset.  For our particular case study, the logic needs 
to include the CP, DP and BC blocks of the memory 
controller.  It turns out that these blocks encapsulate 
most of the logic on the memory controller subsystem.  
In all, this logic is estimated be about 800k gates. 

3. Abstract unnecessary logic.  This step in the standard 
FV methodology identifies logic that can be 
simplified to reduce the analysis region.  Common 

abstractions include counters and deep FIFOs.  These 
can usually be reduced to versions that have abstract 
values that represent groups of concrete values, such 
as a counter that only has values for empty, partially 
full and full.  If the value of the counter between when 
it is empty and when it is full is irrelevant to other 
events, this simplification reduces the state space of 
analysis enormously.  Abstractions of this sort over-
approximate the state space of the design and are safe 
for proofs of properties.  For counterexamples, 
however, they frequently lead to false traces that are 
not possible in the full logic, or to traces that are 
inconsistent with the events that the designer is 
expecting to see.  Hence, when searching for an error 
signature, abstractions must be made with even more 
care, and avoided if possible.  The example in our 
case study was performed with no abstractions.  

4. Set input constraints.  The method of setting input 
constraints, when none are present, was described in 
section II.B.  For our error signature, a full set of input 
constraints for the analysis region (the memory 
controller) was available from pre-silicon verification. 

5. Find trace using waypoints.  This step is simply the 
iterative targeting of successive waypoints, using the 
trace to the previous waypoint as the initialization 
sequence.  For the first waypoint, the initialization 
sequence is the normal reset sequence for the design.  
The detailed performance numbers for the waypoints 
and error signature of our case study are shown in 
section IV.  

Once the error signature is found and the theory of the 
error is confirmed, the next step is usually to fix the error and 
validate that it has been removed from the design.  In our case, 
the underlying cause of the error was that the dpstall counter 
was missing a stall term that would prevent it from wrapping 
and was thus allowing multiple stall releases.  Once fixed, the 
RTL was re-checked, with each waypoint and the error 
signature targeted by FV.  We were able to quickly obtain 
proofs that the first two waypoints were unreachable.  
Although the complexity of the design prevented us from 
obtaining a full proof that the error signature is unreachable, 
the fact that the necessary preconditions for the error were no 
longer possible gave us confidence that the fixed RTL no 
longer has the error. 

IV. COMPARING DIRECT AND INDIRECT FORMAL 
ANALYSIS 

The case study in section III highlights the difference 
between model checking from a reset state versus model 
checking using waypoints.  The complexity of the target 
property is just beyond the reach of bounded model checking, 
using standard commercially available model checkers.  
Applying waypoints, however, narrows the scope of analysis 
sufficiently to reach the target (Table 1).   



Table 1.  Direct FV of Target vs. FV using Waypoints 

Target Initialization 
sequence 

Mem. Time 
(CPU sec) 

Analysis depth CEX 
found? 

Error 
Signature 

Reset state 32 
GB 

> 260000 
(3 days) 

65 no 

Waypoint 
1 

Reset state 9 GB 2135 28 yes 

Waypoint 
2 

Waypoint 1 
(28 cycles) 

9 GB 32637 40              
(68 from reset) 

yes 

Error 
Signature 

Waypoint 1 
(28 cycles) 

32 
GB 

> 260000 
(3 days) 

40              
(68 from reset) 

no 

Error 
Signature 

Waypoint 2 
(68 cycles) 

9 GB 1250 1               
(69 from reset) 

yes 

 

Table 1 shows that the error signature is only a few cycles 
away from the achieved analysis depth of the FV run from 
reset (as shown in row 1).  What is not shown in this table is 
that the analysis depth of the run from reset had been at 65 for 
approximately 50% of the runtime and appeared incapable of 
making further progress.  It is common for bounded model 
checkers to hit an analysis depth limit, beyond which it is 
impractical to continue within a reasonable time. 

Also compare row 4 (“Error Signature target from 
Waypoint 1”) against row 5 (“Error Signature target from 
Waypoint 2”).  Row 5 shows that only one additional cycle of 
analysis was needed from Waypoint 2 to find the error 
signature; but that single cycle required a large amount of 
analysis.  It is easy to fall into the trap of thinking that with 
only a few cycles of analysis needed to reach the next target 
property, it is simply a matter of providing a small amount of 
additional time or memory.  One characteristic of SAT-based 
model checking, however, is that the amount of CPU time and 
memory required to complete each additional cycle of analysis 
has little correlation to the amount of CPU time required for 
any previous cycle; it is dependent only on the model and the 
hardware state.  Exponential explosion in time or memory 
frequently occur at large analysis depths.  In this case, this 
single cycle of analysis pushed the target assertion out beyond 
the reach of analysis from Waypoint 1.   

V. SUMMARY 
 This paper describes a method of finding the root cause of 

an error signature, which is particularly valuable in post-
silicon debug, using model checking of multiple waypoints to 
reduce the scope of formal analysis.  The methodology 
includes guidelines for selecting the type of model-checking 
engine to use, a procedure for selecting input constraints that 
utilizes known information from the error signature, and a 
procedure for identifying waypoints and using them to find a 
path to the error signature from a reset state of the design.  The 
method was illustrated with a detailed case study from the 
post-silicon debugging of the Anton ASIC, providing 
examples for each step of the method.  Finally, performance 
numbers were presented for an example in which the method 

of using waypoints is able to discover a path to an error 
signature that would not be found within a practically feasible 
amount of time using a standard formal verification 
methodology.  (The error in question, which was handled 
using a software workaround, was fixed in a subsequent 
version of the Anton chip.) 
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